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Abstract
This paper investigates and develops techniques and theory for implementing state-of-the-art model-based

reinforcement learning techniques. First, neuroscientific ideas of prediction and inference are developed. The
basics of deep learning and the reinforcement learning problem are then discussed. Deep model-free and
model-based methods are developed in the context of later discussions. Theory of latent representation and
predictive methods is presented before discussing advanced state-of-the-art models. Emphasis is placed on
how these agents apply a broad range of the previously developed techniques. A discussion and implemen-
tation of a state-of-the-art agent (MuZero) in Python follows. Finally, the direction of the field as a whole
is discussed.
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1 Introduction
The field of reinforcement learning (RL) is at a crossroads between optimal control, animal psychology, artificial
intelligence and many other technical fields including game theory [1] and finance [2]. It has seen a surge of
interest with high profile successes, such as the dominance of AlphaGo [3] over 18 time world Go champion,
Lee Sedol. The idea of reinforcement learning emerged out of the study of animal psychology and the concept
of trial-and-error learning. Edward Thorndike coined the Law of Effect in 1898, introducing the idea of rein-
forcement in the context of learning. He proposed that if a stimulus is followed by some successful response
(reward in RL), then that stimulus-response connection will be strengthened [4]. Recent successes of the theory
of reinforcement learning at solving complex computational tasks have seen a resurgence in the field. This paper
develops and discusses advanced topics in reinforcement learning in the context of modern advancements and
interest.

Reinforcement learning can be seen as a subset of machine learning alongside supervised and unsupervised
methods. Whereas supervised and unsupervised learning deal with labelled and unlabelled static data respec-
tively, reinforcement learning deals with how an agent should learn to make decisions in an abstract environment
with a potentially changing landscape. More recently, the field has been subdivided into unsupervised RL and
supervised RL. In supervised RL we explicitly program the reward structure from which the agent learns. In
unsupervised RL the agent can learn from intrinsic motivations, such as curiosity. Most success in the field thus
far has been in the supervised approach to reinforcement learning, and for this reason this paper will focus on
these approaches.

RL is, for the most part, a formalism for the idea of trial-and-error learning. At each time-step an agent
in an environment with a well defined state can perform some action. This action triggers a response from
the environment in which the environment rewards the agent for taking this action and moves the agent to a
new state. Naturally, the goal of the agent is to maximise the expected reward over time - the return. Further
complexity arises in that the agent does not explicitly know how the environment will react and may only have
partial information about what state it is currently in. For example, a human playing Montezuma’s Revenge
(an Atari game used for benchmarking RL agents) can only see a portion of the environment and cannot be
sure about what exact state the surrounding environment is in. It must attempt to make optimal decisions with
imperfect information.

Reinforcement learning algorithms are usually categorised as falling into one of two categories - model-free
reinforcement learning (MFRL) or model-based reinforcement learning (MBRL). In MFRL an agent directly
learns a value function or policy for interacting in the environment by observing rewards and state transitions,
while in MBRL the agent uses its interactions with the environment to learn about the environment’s dynamics,
and thereby model it. Model-free methods have enjoyed success in areas such as robotics and computer games,
however they are plagued by high sample inefficiencies [5]. These sample inefficiencies often limit the application
of these methods to simulated environments which are less complex than real world dynamics. Learning a model
of the environment allows an agent to significantly reduce the dimensionality and complexity of the environment
it interacts with, allowing for much improved sample efficiency and performance in many simulated and real
world scenarios. By learning a model of the environment, an agent can apply well known supervised learning
techniques to plan an optimal strategy for maximising reward. Learning a good model of the environment is a
non-trivial task as modelling errors can prove crippling to many tasks. This is the problem of model-bias.

This paper starts by developing the the theory of mind and reinforcement learning that will be used later
in the paper. We then discuss popular model-free reinforcement learning methods and their pitfalls, especially
those that make use of deep neural networks. From this we develop the theory of model-based reinforcement
learning and develop critical notions of planning and learning. State-of-the-art methods which make use of latent
representations, prediction, planning and learning with a model are then discussed. Finally a state-of-the-art
agent which make use of some of these techniques will be implemented and discussed in detail.

2 Theory of Mind
As discussed in the introduction, the field of reinforcement learning is intimately tied to fields of psychology
and computational neuroscience, among others. Modern theories argue prediction plays a vital role in human
perception and inference, and is especially apparent in emerging theory of active inference [6]. It is argued
that the active inference framework (AIF) makes it possible to bridge the fields of computational neuroscience
and artificial intelligence by revealing common underpinnings of the theories, and using combined theory to
overcome limitations. Using the principle of free energy minimisation, AIF provides a rigorous information-
theoretic and naturalistic foundation for problems involving inference. Key to this formulation, a generative
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model allows an agent to generate a model or predictions for novel environments based on past experiences
of related environments. In other words, a generative model is a description of how an agent can leverage its
prior experience to form a model of a foreign environment. This generated model can then be updated in the
Bayesian sense as more information is acquired.

2.1 Predictive Coding & Predictive Processing
Predictive processing is a theory of mind in which the brain attempts to form and update a model of the en-
vironment. This model, as in model-based RL, can be used to make predictions of expected sensory input and
can be compared to observed sensory input. This difference in prediction and true value can be used to revise
and adapt the model, thereby improving future predictions. Effectively, this minimises the surprise. Predictive
coding asserts that perception is largely constrained by prior predictions. That is, sensory signals only inform
and shape perception insofar as they cause surprise to the system. In other words, signals inform perception
given sensory input is different from sensory prediction.

Figure 1 shows an example of how the predictive coding model passes predictions down the network, and
differences in prediction and reality are passed and filtered back up.

Figure 1: This diagram displays an example of the flow of information in the top-down theory of mind -
predictive coding. Exteroceptive predictions are generated by the model. These predictions are compared to
sensory input. Discrepancy between the model predictions and sensory input is passed back up in the form of
a prediction error. Refer to [7].

For a theory of mind to be feasible, it must satisfy basic biological constraints. These constraints, as Bogacz
[8] describes, can be summarised as:

1. Local computation - wherein a neuron only performs computation on in relation to the activity of
neuron input and associated weights.

2. Local plasticity - synaptic plasticity is only a function of the activity of pre-synaptic and post-synaptic
neurons.

2.2 Free Energy and Active Inference
The free energy principle is an attempt at explaining how a self-organising system can maintain a non-equilibrium
stead-state that is compatible with its existence - a phenomenon which seems to be in contradiction with the
second law of thermodynamics 1. Biological systems are said to minimise some free energy function of their
internal states. Crucially, the theory uses this principle as just that - a principle. No evidence is used to
promote the framework itself. Applications, however, of the framework require evidence and motivation for
its use. Active inference is the notion of embodied perception in neuroscience as explained by the free energy
principle. Active inference with a generative model ties together ideas of proprioception and interoception by
telling us that agents must actively seek out sensations to increase their knowledge of the world. In some sense,
the agent actively coordinates its sensors to control and obtain the sensations it seeks more knowledge of to
further minimise its surprise. Formally, active inference occurs as a tuple (Ω,Ψ, S,A,R, q, p), where each of the
parameters are defined as follows:

• Ω is the sample space of random fluctuations.
1The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time. In fact,

entropy tends to increase if any process within the system is non-reversible.
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• Ψ : Ψ × A × Ω → R is a hidden or external state which causes sensory states dependent on the action
selected.

• S : Ψ×A×Ω→ R are the sensory states. This is a stochastic mapping from the action and hidden states.

• R : R× S → R are the internal states that cause action and are dependent on sensory states.

• p(s, ψ|m) is the generative density over sensory and hidden states conditioned on a generative model, m.

• q(ψ|µ) is the variational density over hidden states parameterised by an internal state µ.

Using this formalism we can formalise the objective of an inference agent. The theory of active inference tells
us that the agent wishes to maximise its model evidence p(s|m) or minimise the surprise log p(s|m). We can
tractably calculate and apply an upper bound on this surprise - the variational free energy. Internal states
thus minimise the free energy of the system. Interestingly, all Bayesian inference can be cast as a free energy
minimisation problem. Minimising free energy with respect to the internal states corresponds to a optimisa-
tion over the Kullback-Leibler divergence between the variational and posterior densities over hidden states.
Furthermore, free energy minimisation can be related to the principle of minimum redundancy in information
theory to explain optimal behaviour. There are many further applications and related ideas in thermodynamics,
neuroscience, optimal control and game theory for example. This generality is precisely why the principle is so
powerful and fundamental.

One might start to wonder why all of this is so important in the context of reinforcement learning. The
reason for this is the ideas of active inference can be applied to the classical studies of optimal control, which
forms the foundation for much of the work in reinforcement learning. Predictive methods, as mentioned in the
introduction, have recently proved to be highly performant in many model-based applications of reinforcement
learning and artificial intelligence in general. Active inference relates to optimal control by replacing the value
function (as we will discuss in detail in the context of RL) with a Bayesian prior belief function about the state
transitions of the system,

f = Γ · ∇V +∇×W,

where V is the scalar value function and W is the vector value function. This is in contrast to optimal control
where the system is assumed to be in detailed balance (W has curl-free flow). The priors over the state transi-
tions induce priors over the states themselves, which form a solution to the forward Kolmogorov equations. In
’what is optimal about motor control?’ [9], Friston argues that active inference may be a better way to under-
stand and frame the problem of perception as forward models used in motor control are not the same as the
generative models needed for perception in the brain.

We are now ready to work through an extended example to explain and explore some of the details of this
method.

1D Perception Example

It is helpful and instructive to run through an motivating example presented in detail in Bogacz’s tutorial on
the free energy framework [8]. This example works through the mathematics of perception in the predictive
coding and free energy framework, and uses this simplified approach to motivate the framework as viable and
neurologically plausible.

We start by framing the problem. Let us consider the problem of an organism trying to infer the size of a
nearby piece of food from the observation of light intensity. This observation is assumed to be 1-dimensional.
That is, it is a single observation. Formally, we define the parameters of interest as follows:
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i. Let v be the food size

ii. Let g be a nonlinear function relating size to light intensity

iii. Then u is a noisy estimate of the light intensity s.t. u ∼ N(g(v),Σu)

To compute the food size explicitly, our organism would need to calculate p(v|u) = p(v)p(u|v)
p(u) . This involves

calculating p(u) =
∫
p(v)p(u|v). This integral could be difficult to compute since the posterior distribution of

food size given some observation could be non-trivial. Since we cannot rely on summary statistics to describe
the distribution, we turn to an approximate method.

Consider now computing the most likely food size, which we shall denote as φ. This maximises p(v|u) - an
approach which should be more tractable than finding the whole posterior distribution. The posterior density is
then p(φ|u) = p(φ)p(u|φ)

p(u) , where p(u) does not depend on φ. To find φ that maximise the posterior we maximise
the log of the distribution, since the logarithm is a strictly increasing function.

F = ln(p(φ)p(u|φ)) = ln(p(φ)) + ln(p(u|φ))

=
1

2
(− ln(Σp)−

(φ− vp)2

Σp
− ln(Σu)− (u− g(φ))2

Σu
) + C

We then update φ proportionally to the direction of steepest ascent,

∂F

∂φ
=
vp − φ

Σp
+
u− g(φ)

Σu
g′(φ).

We notice εp =
φ−vp

Σp
and εu = u−g(φ)

Σu
are prediction errors. That is, they are simply weighted differences

between expected values and observed values. Let us consider the feasibility of a neural implementation.
Assume vp,Σp,Σu are encoded in strength of synaptic connection, and that φ, εp, εu, u are encoded in activity
of neurons. If we define the dynamics as follows,

ε̇p = φ− vp − Σpεp

ε̇u = u− g(φ)− Σuεu

we can compute the prediction errors in a feasible, Hebbian manner. Considering ε̇p → 0 and ε̇u → 0 and notice
the dynamics converge to the prediction errors themselves.

The question now is, how do we go about learning. As in 2.1, we know that least surprise ⇐⇒ most ex-
pected. Here, we want to maximise p(u) but we said this was not feasible. It is simpler to maximise the joint
distribution p(u, φ) = p(φ)p(u|φ) by maximising F = ln p(u, φ). Consider some distribution q(v) which ap-
proximates the posterior, p(v|u). To ensure a good approximation, we want to minimise the difference between
these distributions. The Kullback-Leibler divergence is one measure of the dissimilarity between distributions.
Applying the definition of KL-divergence,

KL(q(v), p(v|u)) =

∫
q(v) log

q(v)p(u)

p(u, v)
dv

=

∫
q(v) log

q(v)

p(u, v)
dv +

∫
q(v)dv ln p(u)

=

∫
q(v) log

q(v)

p(u, v)
dv + ln p(u)

Defining −F =
∫
q(v) log q(v)

p(u,v)dv as the free energy, we get

KL(q(v), p(v|u)) = −F + ln p(u)

where ln p(u) is independent of φ. Therefore, maximising F (minimising -F) gives the desired result. Thus,
minimising the free energy - and thus surprise - ensures the approximation is good.

F = − ln p(u) +KL(q(v), p(v|u)

= − ln p(u)︸ ︷︷ ︸
surprise

+

∫
q(v) log

q(v)p(u)

p(u, v)
dv︸ ︷︷ ︸

posterior distribution

It should now be clear how minimising suprise can reveal information about the state a system is in. This ties
in well with the theory of optimal control and reinforcement learning. These links should become more clear as
we develop the theory of reinforcement learning.
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3 Theory of Learning
We are now ready to discuss the problem of how an agent can learn to solve some assigned problem. There
are various approaches that shall be discussed in this paper, including model-based and predictive methods. In
this section some important definitions and basic theory in the study of learning is introduced. Since this paper
focuses mainly on modern reinforcement learning, the notation used sticks to the conventional style (in contrast
to classic studies of optimal control for example) which will present itself in almost all modern research and
practical implementations.

3.1 The Reinforcement Learning Problem
The problem of reinforcement learning (RL) is that of how to map states to actions so as to maximise some
numerically encoded reward signal [10]. As discussed in the introduction, the reinforcement learning agent
experiences a changing landscape based on the actions it takes and attempts to learn an optimal sequence of
actions by applying the concept of trial-and-error with reinforcement theory. This problem can be formally
stated in terms of Markov decision processes (MDP) within what Sutton and Barto [10] refer to as the agent-
environment interface. MDPs are an appropriate formalism for the RL problem since many (especially classical)
reinforcement learning algorithms make use of dynamic programming techniques where the exact mathematical
model of the problem is available. In some sense, reinforcement learning is the study of approximate dynamic
programming.

The agent-environment interface describes how an agent and the environment the agent is interacting
with communicate and interplay. It is cyclical in nature, as shown in figure 2.

Figure 2: Diagram showing the flow of components in an MDP. An agent selects action At. The environment
returns the next state and an associated reward to the agent, dependent on the selected action. The process
then repeats [10].

We can begin to formalise the RL problem by first noting that the reward an agent receives is only dependent
on the current state it is in, as well as the action it decides to take. In other words, the history of how the agent
got to the current state is irrelevant. In statistical terms, we can say it has the Markov property. Of course,
we can formulate problems in which the environment has some memory of the agent’s decisions [11], but this is
not the common approach in RL and shall not be discussed further.

Definition 3.1 A state has the Markov property if for t = 1, 2, . . . , P (Xt+1 = it+1|Xt = it, . . . , X1 = i1, X0 =
i0) = P (Xt+1 = it+1|Xt = it).

The agent exists in an environment of states which all have the Markov property. The states thus form a Markov
chain.

Definition 3.2 A discrete-time stochastic process is a Markov chain if every state has the Markov property.
Formally, it is a tuple (S, P ) of states S and transition probabilities P .

Further, since moving from one state to another results in a reward, we can define a Markov reward process.

Definition 3.3 A Markov reward process (MRP) is a Markov chain where rewards are associated with each
state. Formally, it is a 4-tuple (S, P,R, γ) of states S, transition probabilities P , rewards R, and a discount
factor γ.

Further, the agent exists in the MRP and can make decisions. This leads to the definition of a Markov decision
process (MDP) with which most RL problems can be formulated.
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Definition 3.4 A Markov decision process (MDP) is a Markov reward process with actions that can be taken.
Formally, it is a 5-tuple (S,A, P,R, γ) of states S, actions A, transition probabilities P , rewards R, and a
discount factor γ.

In many modern problems an agent can only observe part or some representation of states in the state space.
This requires the further abstraction of a partially observed Markov decision process (POMDP).

Definition 3.5 A partially observed Markov decision process (POMDP) is a Markov decision process in which
the agent cannot observe the underlying state. Instead, there are observations and associated observation prob-
abilities which allow inference about the underlying state. Formally, it is a 7-tuple (S,A, P,R,Ω, O, γ) of states
S, actions A, transition probabilities P , rewards R, observations Ω, observation probabilities O, and a discount
factor γ.

Objective Function

As stated in section 3.1, the aim in reinforcement learning is to maximise the expected return over some time
horizon. Given some policy parameterised by some vector θ, we can reformulate this by finding the θ which
maximises some objective function, J(θ), defined as follows.

J(θ) = Eτ∼pθ(τ)

[∑
t

r(st, at)

]
' 1

N

∑
i

∑
t

r(si,t, ai,t)

Thus, the goal is to find the parameterisation of our policy such that,

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st, at)

]
︸ ︷︷ ︸

J(θ)

.

If we now consider the task of maximising this objective, taking the gradient seems like the natureal next step.
This leads to the formulation of policy based methods which we discuss in section 4.

3.2 Bellman Equations
The Bellman equation is a fundamental necessary result that says the value of a decision problem at some
discrete time step is given in terms of the payoff from the current step and the value of the remaining decisions.
In other words, the Bellman equation breaks the optimisation of the value of a sequence of actions into a
sequence of subproblems that are simpler to solve. This is done using the Bellman principle of optimality which
states that:

Principle 3.1 The Principle of Optimality states that an optimal policy has the property that no matter the
initial state and decision, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.

This principle motivates the derivation of the Bellman Expectation Equation,

vπ(s) = E [Rt+1 + γvπ(St+1)|St = s] .

We can similarly derive an expression for the state-action value,

qπ(s, a) = E [Rt+1 + γqπ(St+1, At+1)|St = s,At = a] .
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Figure 3: Backup diagram for state-action value.

This equation tells us that, under some policy π, we can determine the value of some state-action pair by
observing the reward after taking the current action and then averaging over the expected reward from future
actions. This allows us to define Optimal Value Functions for an MDP. The Optimal Value is simply the value
function that yields the highest expected reward,

v∗(s) = max
π

vπ(s) and q∗(s, a) = max
π

qπ(s, a).

This, in turn, defines the Optimal Policy. An optimal policy is one which yields the optimal value function. Of
course there can be more than one such policy. A policy π is said to be better than another policy π′ if

π ≥ π′ if vπ(s) ≥ vπ′(s),∀s.

Then, formally, the optimal policy is

π∗(a|s) =

{
1 if a = arg maxa∈A q∗(s, a)

0 otherwise
.

Finally, we can define the Bellman Optimality Equation as the Bellman Expectation Equation where instead of
taking the average of the actions, our agent selects the action with the max value. This is exactly what many
reinforcement learning methods do to solve the reinforcement learning problem in terms of a defined MDP.

3.3 Exploration and Exploitation
One of the inherent problems an agent faces in some arbitrary environment is how to decide whether to explore
and discover more of the world around it, or to rather apply what it already knows and exploit this knowledge
to maximise the expected return. There is a trade-off since exploiting what we already know will likely lead to
some amount of reward, but with imperfect information about the world around the agent there is a possibility
that the agent is missing out on some large reward it does not yet know about. There is thus a problem of
ensuring good exploration of the state-space while also ensuring at some point we apply what we have learned
to ensure good reward. This problem becomes even harder when the environments dynamics are themselves a
function of time, and so what we have learned in previous time-steps may become invalid as we progress. This is
an active area of research and some possible solutions are presented and discussed in the context of model-based
reinforcement learning in later sections.

Multi-armed bandit problems consist of of choosing among multiple discrete arms, each yielding some spe-
cific reward with some unknown probability. The common example is that of a slot machine. The reward
function of the bandit is unknown, so an agent must interact with it to learn and approximate its reward
function. At each point it must make the decision of whether to learn more about the machine or to exploit the
knowledge it has gained. Three such strategies for how an agent can decide on an action are now discussed.

ε-greedy

Epsilon-greedy methods are the simplest methods for deciding on an action with some trade-off between explor-
ing and exploiting. A greedy method is one in which the agent always, greedily, chooses the actions it believes
will yield the highest reward. ε-greedy methods extend this idea to incorporate some non-greedy (exploratory)
decisions with some probability 1 − ε. In practice these methods are surprisingly robust and performant, and
show up in state-of-the-art methods. Some problems with ε-greedy methods is that it chooses the action to
explore indiscriminately. That is, there is no weighting or rule for how to choose what action to explore. The
exploration strategy itself may be poor in scenarios where random exploration is not ideal. In practise ε = 0.99
often performs well. Decaying epsilon values are further simple modification which allows an agent to exploits
more of its knowledge over time as it gains knowledge and it has explored more of the state space.
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Upper Confidence Bound

One of the problems with ε-greedy strategies was the indiscriminate choice of actions when exploring. One
approach is to maintain some prior distribution encoding what we know about the reward function for each
state-action pair. This Bayesian strategy allows us to explore possibilities which have high uncertainty in our
knowledge - ones which may have high reward. UCB says we should choose the action in which the associated
expected reward plus one standard deviation (from our prior of that option) is the highest. Formally, µ+ βσ is
the upper confidence bound where β is a trade-off parameter which shrinks over time.

Figure 4: Three prior distributions encoding our knowledge about the reward for each option available to the
agent. The option with the highest µ+ βσ (in yellow) is selected for exploration.

Thompson Sampling

The last strategy to be discussed is that of Thompson sampling - a method which is theoretically similar to
UCB. In Thompson sampling we ’draw’ from each of our prior distributions and order the the resulting rewards.
The option which yields the highest reward is selected for exploration. This has the effect that options with
high mean rewards µ are selected more often, but uncertain events can also be selected since there is large
variance in the prior distribution. This method, in contrast to UCB, never gives up on any option. Rather, as
we become more certain about the reward priors, choosing options with smaller expected rewards becomes less
likely.

3.4 Trade-offs
Model-free or model-based? Supervised or unsupervised? Gradient or policy methods? Off vs on-policy ap-
proaches? The options for different algorithmic structures in RL seem endless. So why are there so many
different choices? The answer lies in the trade-offs we make when choosing which approach to take. Let’s look
at sample efficiency, for example. We would like to learn as much as possible from every bit of data we have
gathered. So why not choose the most sample efficient method every time? In the current state of RL, many
of the less sample efficient algorithms turn out to be more performant in the long run, and so having more
compute plus a less efficient algorithm turns out to be a better solution than having a more complex or more
sample efficient algorithm. The goal, of course, is to develop algorithms that are highly sample efficient and
performant. State-of-the-art model-based methods are models which aim to do just this, and this is what is
develop in this paper.

Another common way to distinguish between reinforcement learning algorithms is by observing whether or
not they are on-policy or off-policy. Every reinforcement learning agent makes decisions within the framework
of some MDP, and applies some policy to make these decisions. To ensure the agent explores the state-space
the agent must at times make sub-optimal decisions. The policy the agent follows is therefore not necessarily
optimal. The critical difference between an off and on-policy agent is that an off-policy learns a target policy
while enacting some behaviour policy during learning. The agent thus learns off the target policy. An on-policy
agent, on the other hand, learns the policy it is enacting. By their nature, on-policy approaches are generally
easier to implement than their off-policy counterparts. Off-policy approaches, however, allow more flexibility.
For example, an off-policy approach could even learn from a human-expert. In this paper we explore algorithms
which use different approaches and we shall discuss the trade-offs.
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Figure 5: Diagram showing different types of algorithms and their sample efficiencies.

3.5 Benchmarking Algorithms
Environments

In practical applications of RL the environment the agent is placed in determines how well the agent performs.
Testing algorithms on a wide variety of environments becomes very important. Key factors of an environment
include, but are not limited to:

1. How sparse the rewards are. Very sparse rewards could require immense exploration.

2. Whether or not states are fully observable. It may be hard for an agent to estimate the value of the state
it is in with limited information.

3. The stochastic nature of the environment - are rewards highly variable? This makes learning the value of
states more difficult.

4. Multi-objective, unspecified or risk sensitive reward functions. Agents struggle to navigate reward func-
tions as they may ’learn’ states that lead to high reward as being undesirable.

5. Real time inference or decision making. High pace environments limit the computation agents can perform
before making a decision.

6. High dimensionality puts pressure on the agents as it is forced to approximate or sample from the envi-
ronment to make decisions.

7. Delay in rewards means the agent may not know what decision to attribute success to. This makes
repeating good decisions harder.

These problems mean that different agents can perform well in different types of environments. Benchmarking
these agents in tasks known to contain different challenges thus becomes important in evaluating the performance
of an agent. Further, how to measure the ’intelligence’ of an decision making agent is an open question, making
quantifying intelligence all the more challenging. Many state-of-the-art model-based algorithms have been
recently benchmarked [5]. The authors conclude that "across this very substantial benchmarking, there is no
clear consistent best MBRL algorithm, suggesting lots of opportunities for future work bringing together the
strengths of different approaches." Some of the common environments in which modern algorithms are tested
include

1. The Arcade Learning Environment (ALE) for classic control tasks with (often) partial observability.

2. MuJoCo for continuous control and physics based tasks.

3. VizDoom for partial observability and high-risk training.

4. Board games such as Chess, Go, and other high dimensional, well defined rule-based games.

Finally, the challenges of real-world applications of RL are often not present in popular environments for testing
RL. A new environment for testing all of these challenges simultaneously is Humanoid [12]. Future testing and
comparison should be performed on similar, diverse environments.

Measuring Intelligence and ARC

Expanding on the question of how to measure artificial intelligence, François Chollet argues we need an explicit
goal to measure, not just anecdotal performance measures [13]. Classical tests, such as the Turing test, is not a
sufficient measure as it outsources the measure of intelligence to humans. Measuring intelligence this way breaks
down into a question of "does this agent seem human to you?" This is a biased in the way of humans and leads
to the AI effect wherein each time a new achievement in AI is reached (e.g. Deep Blue Chess performance)
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the benchmark for intelligence is ’moved’. Chollet raises the point that intelligence should measure both skill
and adaptivity of an agent, and so testing agents on a wide range of environments is crucial. Chollet raises
the point that current machine learning agents are locally intelligent in that they know their ’unknowns’. The
next stage of AI is broad intelligence in which agents will be able to solve a broad category of related tasks.
Arguably some of the model-based methods presented later in this paper, such as MuZero, satisfy some of these
conditions. The ultimate goals of AI research is to create an extreme intelligence agent. This level of intelligence
would be the ability to solve open-ended and abstract problems, similar to how humans can solve previously
unknown problems. He is also argues that intelligence should be measured in a different manner to performance
because task performance can be memorised or ’bought’ by throwing data at the problem. Chollet goes on to
model a measure of intelligence on psychometric (IQ) testing done on humans. The Abstraction and Reasoning
Corpus (ARC) provides a benchmark to measure skill-acquisition of AI agents on unknown tasks. The agents is
constrained to learning from a limited number of demonstrations of complex tasks. Solving tasks with limited
demonstrations requires extreme sample efficiency - something model-based approaches are relatively good at.

Figure 6: Diagram showing the hierarchical structure of general intelligence in humans. Obtained from [14].

3.6 Deep Learning
This paper focuses on modern and highly performant approaches to reinforcement learning. As with all of
machine learning, the trend has been towards applying deep learning approaches for function approximation to
boost performance. This section will briefly discuss what neural networks are and some of the important results
which underpin the impressive performance these methods provide. The focus of this paper, however, is not the
mathematics of deep learning and so the details will not be dwelled on.

An artificial neural network (ANN) is a computing system inspired by biological neural networks in an ani-
mal brain. An ANN is a collection of connected nodes called neurons joined by synapses having associated
weights. This structure forms a weighted directed acyclic graph, and leads to some remarkable results which
are vital in deep learning.

Theorem 3.1 (Universal Approximation Theorem) A feed-forward network with a single hidden-layer
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containing a finite number of neurons can approximate arbitrary well real-valued continuous functions on com-
pact subsets of Rn.

This theorem tells us that the construction of a simple neural network to represent a wide range of possible
functions is possible when given the appropriate parameters and weights. A neural network can thus be used to
approximate any function given some mild assumptions. This is especially useful for approximating functions
in reinforcement learning and machine learning in general.

The structure also allows for a the backpropagation algorithm. This algorithms provides a method for eval-
uating the expression for the derivative of the cost function as a product of derivatives between layers of a
neural network from left to right by. The algorithm can be formulated and efficiently computed using matrix
multiplication. This is vital as, combined with the universal approximation theorem, it provides a platform for
evaluating rates-of-change of arbitrarily complex functions!

Though inspired by the biological brain, and originally designed to imitate it, over time the focus of research in
neural networks has been in designing networks for specific tasks. For example, state-of-the-art models in object
detection and image classification applies convolutional neural networks (CNNs) in which data is sent through
a series of convolutions which modifies the data in such a way so as to highlight features of the image. In fact,
CNNs are especially important in visual reinforcement learning tasks. Further important advances include re-
current neural networks (RNNs) which can deal with sequential data such as speech or text. Examples include
long short-term memory (LSTM) models, which tackle the problem of vanishing gradients in networks. All
these models are important in the context of RL because input data to an RL model often has to be processed
by these methods to obtain state-of-the-art performance. This will be apparent when we look at modern agents
such as MuZero and Dreamer.

4 Model-Free Methods
Model-free reinforcement learning algorithms are a class of algorithms which do not use the transition probability
information to train and make decisions. In a sense, they are a class of trial-and-error learning algorithms which
purely use experience of reward to choose and learn an optimal policy. There are three major classes of such
algorithms in modern literature and can be classified as:

1. Policy-based methods,

2. Aactor-critic methods, and

3. value based methods.

State-of-the-art methods often use approximate methods. As is common in modern machine learning, neural
networks are often used as the function approximators. With this in mind, we now develop the model-free
approaches to deep reinforcement learning - model free methods with deep neural networks as the function
approximators.

4.1 Policy-based Methods
Policy-based methods seek to optimise and learn a policy directly without the need for consultation of a value
function (discussed in section 4.3). The policy parameter is usually learned by maximising some performance
measure, J(θ) - the objective function. Naturally, we consider maximising this function directly by moving in
the direction of steepest ascent.

Theorem 4.1 (Policy Gradient) For any Markov decision process (MDP) we have that, in both the average-
reward and start-state formulations,

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ) = E

[∑
a

qπ(s, a)∇π(a|s,θ)

]
,

where the constant of proportionality is 1 for continuous case and the average length of an episode for the episodic
case. Here J(θ) is the performance measure parameterised by θ, and µ(s) is the on-policy state distribution -
the time spent in each state under policy π [10].
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4.1.1 Direct Policy Differentiation

As is common in machine learning, we now consider trying to maximise the objective function by directly
computing the gradient.

∇J(θ) =

∫
∇θπθ(τ)r(τ)dτ

=

∫
πθ(τ)

∇θπθ(τ)

πθ(τ)
r(τ)dτ

=

∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ

= Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)]

Let us now consider the finite-horizon case.

πθ(s1, a1, . . . , sT , aT )︸ ︷︷ ︸
πθ(τ)

= p(s1)

T∏
t=1

πθ(at|st)p(st+1|st, at)

log πθ(τ) = log p(s1) +

T∑
t=1

log πθ(at|st) + p(st+1|st, at)

∇θ log πθ(τ) = ∇θ log p(s1)︸ ︷︷ ︸
0

+∇θ
T∑
t=1

log πθ(at|st) +∇θp(st+1|st, at)︸ ︷︷ ︸
0

Thus we get the useful result,

∇J(θ) = Eτ∼πθ(τ)

[(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t=1

r(st, at)

)]

' 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(at|st))(
T∑
t=1

r(st, at)

)
That is, we can sample trajectories to get an estimate for the gradient of the objective function. This gives us
a tractable method of updating our parameter of the policy, θ.

θ ←− θ + α∇J(θ),

where α is some learning parameter. Notice how we did not use the Markovian assumption in this derivation
of the update rule. This means that the gradient applies even in the context of a partially observed MDP.

4.1.2 REINFORCE

REINFORCE (Monte-Carlo Policy-Gradient Control) can be seen as the most basic form of a family of policy
gradient methods. These policy-based methods aim to exploit the properties of the policy gradient theorem to
efficiently improve the policy directly.

Effectively, REINFORCE is the obvious algorithm which arises from direct policy differentiation. First, we
sample some trajectories {τ i} by running our policy πθ. We compute the gradient of the objective function
using these samples, and then update our parameter θ. The algorithm is given in pseudocode below 4.1.2.

Algorithm 1 REINFORCE
Input: differentiable policy parameterization π(a|s,θ)
Algorithm parameter: step size α > 0

Initialize policy parameter θεIRd′

for each episode do
Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT−1 following π(·|·,θ)
for each step of episode t = 0,1,...,T-1 do
G←

∑T
k=t+1 γ

k−t−1Rk
θ ← θ + αγtG∇ log π(At|St, θ)

end for
end for

14



4.1.3 Reducing Variance

One problem with the policy methods presented so far is that they are very sensitive to difference in sampled
trajectories. This means the gradients we calculate from the approximation suffer from large variance - that is,
they are very noisy.

Applying the concept of causality, we note that the action we take at time-step t does not change the re-
ward we observe at t′ < t. Therefore, we can reduce the magnitude of the summation by only considering future
rewards, called the reward to go, Q̂i,t.

∇J(θ) ' 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t′=t

r(st, at)

)
︸ ︷︷ ︸

Q̂i,t)

.

Another approach to reducing variance is by considering baselines. The intuition here is that we would like to
make selection of actions that result in above average reward, more likely. We would also like to decrease the
probability of choosing actions that lead to below average reward. Essentially, we want to focus on the relative
success of following some trajectory, τ .

∇J(θ) ' 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t=1

r(st, at)− b

)
,

b =
1

N

N∑
i=1

r(τ).

Figure 7: This figure providing intuition for why using baselines is a good idea. The height of the surface gives
the amount of reward as a function of trajectory. We want to make the trajectories along the peaks of the
surface more likely [15].

Subtracting a baseline is unbiased in expectation, E [∇θ log πθ(τ)b] = 0, but not unbiased in variance. This
is the exact behaviour we want. The optimal baseline can be derived by considering the baseline that minimises
this variance. It turns out the optimal baseline is the expected reward weighted by the magnitude of the
gradients. Often in practice, we just use the expected return - the value function.

Figure 8: Figure displaying how the reward to go can be approximated by the Q-value [15].
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4.2 Actor-Critic Methods
One way we can improve upon policy-based methods is by introducing a critic to indicate how well the agent
is doing at any point along some trajectory. The critic can be thought of as a state dependent baseline. Note,
the fact that the baseline is now state depenedent has no affect on the expectation - it remains unbiased.

∇J(θ) ' 1

N

N∑
i=1

 T∑
t=1

∇θ log πθ(at|st))(Q(si,t, ai,t)− V (si,t)︸ ︷︷ ︸
A(si,t,ai,t)


Given this approach, we now have three different value functions we can approximate. The theory of actor-
critics is focused on how we can best approximate these value functions. The choice of what to approximate
depends on what behaviour is deemed desirable.

1. Aπ(st,at): The advantage, by definition, will always be a much smaller quantity that Qπ or V π. It will
thus lead to a smaller variance in theory. It is, however, strongly dependent on policy and so might be
highly variable with respect to choice of π.

2. Qπ(st,at): Dependent on state and action. Not as sensitive to π and Aπ.

3. Vπ(st): Only dependent on state.

Let us consider the problem of trying to estimate the advantage function, Aπ(st, at) = Qπ(st, at)−V π(st). How
can we estimate Qπ(st, at) given that it is dependent on states and actions? Let us start with the single sample
approximation for the expectation as follows.

Qπ(st, at) = r(st, at) + Est+1∼p(st+1|st,at) [V π(st+1)]

' r(st, at) + V π(st+1)

This leads nicely to an approximation is terms of the difference in state-value between two temporally adjacent
states.

Aπ(st, at) ' r(st, at) + V π(st+1)− V π(st)

Then, to get an estimate for V π, we can use Monte-Carlo estimation with neural network function approximation.
We apply supervised learning to training data {si,t, yi,t} where yi,t is the target. This target can be calculated
approximated in two main ways:

1. Monte-Carlo Estimate: This is a single sample estimate approach, which may lead to high variance
but is unbiased:

yi,t =

T∑
t′=t

r(si,t′ , ai,t′).

2. Bootstrapped Estimate: This is an approximation for the ideal target, which is biased with low
variance:

yi,t =

T∑
t′=t

Eπθ [r(si,t′ , ai,t′)] ' r(si,t, ai,t) + V π(si,t+1).

We apply supervised learning with the following loss given by

L(φ) =
1

2

∑
i

||V̂ πφ (si)− yi||2

From here we can start to develop algorithms for evaluating the policy.

Algorithm 2 Batch Actor-Critic
for k steps do
Sample {si, ai} from πθ(a|s).
Fit V̂ πφ (s) to sampled reward sums.
Evaluate Âπ(si, ai) = r(si, ai) + γV̂ πφ (s′i)− V̂ πφ (si).
∇θJ(θ) '

∑
i θ log πθ(ai|si)Âπ(si, ai).

θ ← θ + α∇θJ(θ).
end for
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Extending the idea of batch actor-critic, we can implement an online actor-critic algorithm or even a one-step
actor-critic as implemented below.

Algorithm 3 One-step Actor-Critic
for each episode do
Initialize S (first state of episode)
I ← 1
while S is not terminal state do
A ∼ π(·|S,θ)
Take action A, observe state S’ and reward R
δ ← R+ γv̂(S′,w)− v̂(S,w)
w ← w + αwδ∇v̂(S,w)
θ ← θ + αθIδ∇ log π(A|S,θ)
I ← γI
S ← S′

end while
end for

Further extending these algorithms is possible. State-of-the-art model-free actor-critic methods include
Advantage Actor Critic (A2C) and Asynchronous Advantage Actor Critic (A3C) [16], which apply and extend
these principles of approximating the advantage and minimising the loss function directly to optimise the
parameters.

4.2.1 Proximal Policy Methods

In 2017 a new family of policy methods was introduced in [?] (PPO) [17] which performed better than pre-
vious state-of-the-art algorithms while being easier to implement and tune. These methods alternate between
sampling data from the environment by interacting with it, and optimizing a some other objective function
(the ’surrogate’) using stochastic gradient ascenent. The authors found that PPO strikes a ’favourable balance
between sample complexity, simplicity, and wall-time’. The pseudocode is included for completeness.

Algorithm 4 Proximal Policy Optimisation with Clipped Objective
Input: initial policy parameters θ0, clipping threshold ε
for k = 0,1,2,... do
Collect set of partial trajectories Dk on policy πk = π(θk)
Estimate advantages Âπkt using advantage estimation algorithm
Compute policy update

θk+1 = argmax
θ
LCLIPθk

(θ)

by taking K steps of minibatch SGD (via Adam), where

LCLIPθk
(θ) = Eτ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip(rt(θ), 1− ε, 1 + ε)Âπkt )

]]

end for

4.3 Value-Based Methods
The question now arises, can we omit the policy gradient? Consider the advantage function, Aπ(st, at), which
tells us how much better some action at is than the average performance of any action when following some
policy π. If we then represent this policy as simply finding the action that maximises the advantage at any
stage we are guaranteed to improve (at least in the short term). This policy can be written as

π′(at|st) =

{
1 if at = arg maxat A

π(st, at)
0 otherwise

The guarentee of improvement stems from the policy improvement theorem, as presented by Sutton and Barto
[10].

Theorem 4.2 (Policy Improvement Theorem) Let π and π′ be any pair of deterministic policies such that
Qπ(s, π′(s)) ≥ V π(s) ∀s ∈ S. Then the policy π′ must be at least as good as π.
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Proof 4.1

vπ(s) ≤ qπ(s, π′(s))

= E [Rt+1 + γvπ(St+1)|St = s,At = π′(s)]

= Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s]

= Eπ′ [Rt+1 + γ Eπ′ [Rt+2 + γvπ(St+2)] |St = s]

...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s

]
= vπ′(s)

With this in mind, we can develop the classical methods of reinforcement learning which follow from optimal
control - and often form the introduction to RL. These are the value based methods.

4.3.1 Dynamic Programming

Consider now the situation where we have a discrete, finite state space with discrete, finite actions and we know
everything about the environement and its dynamics. That is, we have a fully observed MDP. Representing this
state-action space as a table, we can store the full, exact value function (e.g. GRIDWORLD). We can notice
that the policy given by the arg maxat A

π is deterministic in the sense that given any state, the action the agent
takes is fully specified as,

π′(at|st) =

{
1 if at = arg maxat A

π(st, at)
0 otherwise → π(s) = a.

Our bootstrapped update method for the value function is then,

V π(s)← r(s, π(s)) + γ Es′∼p(s′|s,π(s))[V
π(s′)].

Simply iterating and applying the policy improvement theorem, we develop a method for finding the optimal
policy (and value function).

1. Evaluate the (preferred) value function

2. Set π ←− π′

Noticing that we can directly improve the value function without finding a policy, we arrive at the value
iteration algorithm.

Algorithm 5 Policy Iteration
Initialise V (s) and Q(s, a) to arbitrary values.
while V(s) has not converged do
for every state s do
for every action a do
Q(s, a)← r(s, a) + γ E[V (s′)]

end for
V (s)← maxaQ(s, a)

end for
end while

We can also evaluate a policy continually to calculate its value functions. We can do this randomly to obtain
an estimate for this value. As the iteration, our value function will converge and we can apply the value function
to determine the optimal policy. Finally we arrive at the classic policy iteration procedure. Here policy iteration
and policy improvement is performed alternatively, iteratively, until convergence upon a (near) optimal policy.

4.3.2 Q-Learning

These ideas of iteratively updating and improving the policy leads directly to a family of fitted Q-value iteration.
The most popular of which is Q-learning. Interestingly, we can notice that Q-iteration is actually off-policy since
it approximates the value of the new policy π′ at the next state s′i. This algorithm is essentially learning some
pool of values for transitions after taking some action in the state-action space.
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Algorithm 6 Q-Learning
Collect dataset {si, ai, s′i, ri} using some policy π.
for K steps do
Set yi ← r(si, ai) + γmaxa′i Qφ(s′i, a

′
i).

Set φ← arg minφ
1
2

∑
i ||Qφ(si, ai)− yi||2.

end for

Notice when discussing dynamic programming, it was specified that the state-action space was discrete.
The curse of dimensionality applies here in the sense that most interesting and real scenarios in which we
want to apply value learning has state-action spaces that are intractably large for any computational device
to represent the value function in a table. Once again, we can apply deep learning methods to approximate
the value function. Applied to value iteration methods, we arrive at the fitted value iteration algorithm. One
example is deep Q-learning (DQN) [18] which uses a Huber loss function, where the loss is quadratic for small
values and linear for large values. This allows for less dramatic changes in the approximation of the Q-value
while learning, which can often negatively impact learning performance. The full pseudocode is presented for
completeness.

Algorithm 7 Deep Q-Learning
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode=1,M do
Initialize sequence s1 = x1 and preprocessed sequence φ1 = φ(s1)
for t=1,T do
Select random action at with probability ε
else select at = argmaxaQ(φ(st), a; θ)
Observe rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random subsample of transitions from D
Set

yj =

{
rj if episode terminates at step j+1
rj + γmaxa′ Q̂(φj+1, a

′; θ−) otherwise

Perform gradient descent step on (yi −Q(φj , aj ; θ)
2 w.r.t. network parameters θ

Reset Q̂ = Q every C steps
end for

end for

5 Model-Based Methods
Up to this point we have discussed methods primarily relying on the learning of value functions, usually
approximating these with some neural network. That is, our focus has been on trying to learn how much each
state is ’worth’ according to the expected return of being in a specific state. Model-based methods add to this
by adding a model of the state dynamics. The dynamics of the system can be:

1. Deterministic: Here the agent knows how the world works. Thus, given some state, the agent can plan
with assured knowledge of how the environment will react to a sequence of actions. Formally, we have

a1, . . . , aT = arg max
a1,...,aT

T∑
t=1

r(st, at) s.t. at+1 = f(st, at).

2. Stochastic Open-Loop: In this scenario the environment dynamics are stochastic, but an agent must
still execute a plan from start to finish whether or not the optimal scenario it has planned for has played
out. That is, it aims to achieve maximum return based on the dynamics of the system conditioned on the
entire plan. The task is then to find actions such that

a1, . . . , aT = arg max
a1,...,aT

E

[
T∑
t=1

r(st, at)

]
.
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3. Stochastic Closed-Loop: In this scenario the agent has the advantage of being able to change its plan
based on the dynamics it observes. The task is then to find a policy such that

π = arg max
π

Eτ∼p(τ)

[
T∑
t=1

r(st, at)

]
.

The aim is to learn how the environment ’reacts’ to specific actions, giving us the ability to simulate experience
and predict the best actions to take from a particular state. The focus here is on state-space planning in which
value functions are computed over all possible states. Notice, there are two distinct ideas here:

1. Learning a model of the environment (learning); and

2. using a model to improve some value function or policy (planning).

Real experience can thus be used in two ways for planning. It can improve the model of the environment and
it can be used to directly improve upon a value function or policy. This relationship is encapsulated in figure 9
below.

Figure 9: Diagram showing how each component of the RL process fits into a complete algorithm. See Chapter
8 [10].

There are clearly advantages to both methods. Model-based (indirect) methods can make fuller use of lim-
ited data collected (better sample efficiency), allowing for fast learning of more optimal strategies. The models,
however, can be limited by design and biases. This makes model-free (direct) methods preferable in some
scenarios. Later we shall see that advancements in model-based methods are quickly closing the gap wherever
there seems to be an advantage in using model-free methods (e.g. Atari).

Figure 9 gives rise to a natural algorithm structure in which is transition between acting, learning a model
and planning happens continually. We shall first discuss planning in the context of reinforcement learning - a
field which borrows heavily from optimal control theory.

5.1 Planning without Derivatives
In the context of model-based RL planning refers to the process of taking a model as an input and producing
an improved policy as output. Since the model is known and all the state dynamics are encapsulated in the
model, the task of improving the policy becomes a task of finding actions that lead an agent along the optimal
(in terms of reward) path in the state-space. This is the state-space planning as presented in Sutton & Barto
[10]. Plan-space planning is another approach in which planning is instead seen as a search through the space
of all plans. Since RL deals with sequential decision making, plan-space planning is not efficient in this context
and is not considered further.

The methods now explored for state-space planning all share a common structure. This involves computing
some value function by simulating experience to improve the policy. There is clear similarity between dy-
namic programming methods often used in the context of tabular state-action spaces and this general planning
structure. This motivates some of the methods we discuss later, such as Dyna-Q.

One simple method for performing derivative-free optimisation of a sequence of actions, A = a1, . . . , aT , is
to select a random set of actions and simply pick the ’best’ one. There are many ways of improving upon this
idea, and we now discuss some of these.
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Cross-Entropy Method

One such method for derivative-free optimisation of a sequence of actions, A = a1, . . . , aT , is the Cross-Entropy
Method (CEM). This method of optimisation is not the best optimiser, but it is extremely easy to implement and
is highly parallelisable. It tends to work well on problems that don’t have large dimenionsality (e.g. d ≥ 100)
and with a low number of time-steps. The intuition behind this method is to randomly sample from some
distribution (commonly Gaussian) of trajectories, select the best trajectories, and then bias this distribution
towards the highly performant trajectories. Repeating this process leads to a situation where we are selecting
from a distribution of high value trajectories. A simple visualisation of this shifting distribution is given below.

Notice that since we optimising entire trajectories, this method is an open-loop planner. It does not make
use of the ability to account for replanning after selecting an action. The model is used in the evaluation of the
value of the trajectory.

Algorithm 8 Cross-Entropy Optimisation
Pick trajectories A1, . . . , AN from some distribution, p(A).
Evaluate value of each sequence, J(A1), . . . , J(AN ).
Select elites Ai1 , . . . , AiM with highest value, M < N .
Refit p(A) using only these elites.

This method can be generalised and improved. For example, one such generalisation (CMA-ES [19]) applies
the idea of shifting the distribution towards the direction of the ’momentum’ of the distribution. That is, we
shift the distribution towards the direction the overall trend of improvement seems to be going.

Rollout & MCTS

Rollout algorithms are a set of decision time planning algorithms which apply Monte Carlo control to simulated
trajectory sampling. They aim to accurately estimate the action-value of a particular state by averaging the
returns over trajectories observed by taking different actions. Once an action-value is deemed accurate enough,
the action with the highest estimated value is selected and executed. Rollout algorithms do not aim to estimate
an optimal policy. Rather, they attempt to select the best action from the current state given some rollout
policy. The policy improvement theorem assures us that selecting the action with the highest estimated value
should result in an improvement of the rollout policy. Of course, whether this works depends on how accurate
your estimates are and how far into the future one can roll out action selection.

Monte Carlo Tree Search (MCTS) is a decision time planning algorithm which combines a rollout algorithm with
the ability to accumulate value estimates. This allows for directing of action selection and simulation towards
trajectories with higher estimated reward. MCTS has been astoundingly successful in improving performance
of many state-of-the-art algorithms to date, including many of the model based algorithms presented in later
sections.

Each iteration of the MCTS algorithm consists of four distinct steps. These can be categorised as follows:

1. Selection: Starting at the root node, a general tree policy is used to select the appropriate leaf to expand.

2. Expansion: At implementation specific points, the selected leaf node is expnded by selecting unexplored
actions.

3. Simulation: A rollout policy is applied to the selected leaf node select the estimated best action.

4. Backup: The newest estimate for the action values are backed up the tree. Action-values for states
beyond the tree policy are not maintained.

These four steps are repeated as many times as constraints of the computational system allow. Once action
selection is required, some policy is used to select the appropriate action. For example, this may be the most
visited or the highest value state. Once an action is selected the sub-tree with the current state as the root
node can be reused from the previous MCTS procedure.
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Algorithm 9 Generic MCTS Algorithm
for K steps do
Find a leaf sl using TreePolicy(s1)
Evaluate the leaf using RolloutPolicy(sl)
Update all values in tree between s1 and sl.

end for
Select best action from s1

The selection of an appropriate tree policy for leaf selection can have a large impact on performance. A
popular choice of a score function for selecting a child in the tree is given by

Score(st) =
Q(st)

N(st)
+ 2C

√
2 lnN(st−1)

N(st)
,

where N(st) is the number of times node st has been visited. This scoring is based on the UCB method, as
presented in section 3.3.

Figure 10: Diagram showing the 4 steps of Monte Carlo Tree Search as explained in Sutton & Barto [10].

5.2 Planning with Derivatives
In the previous section we discussed methods for finding good policies by planning without using derivatives. In
this section classic optimal control algorithms for planning using derivatives are discussed. In many scenarios,
such as in Atari games, we don’t have access to derivative, so planning without them is very useful. In some
cases, however, we do have access to derivative information. Take, for example, the case of robotics in which the
physics of movement is part of a robot’s design. Notice, we can write the goal of a RL agent as a constrained
equation,

min
a1,...,aT

T∑
t=1

c(st, at) s.t. xt = f(st−1, at−1),

where c(st, at) is the cost function. This corresponds to the unconstrained problem,

min
a1,...,aT

T∑
t=1

c(s1, a1) + c(f(s1, a1), a2) + · · ·+ c(f(f(. . . ), . . . ), aT ).

We could optimise this equation bu finding the derivatives, df
dst

, df
dat

, dc
dst

, and dc
dat

. In practices, though, it turns
out to be better to apply a 2nd order method. This holds because a first order ’shooting method’ relies on
observing changes in the state due to small changes in an action. The problem is that a small change in action
at the beginning of a trajectory may lead to large changes in where the agent lands up. Methods for optimising
over states (collocation methods) exist but shall not be discussed further. We now explore the theory for some
2nd order methods.
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Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) solves this problem subject to a special, linear form of the function,

f(st, at) = Ft

[
st
at

]
+ ft,

and a quadratic cost,

c(st, at) =
1

2

[
st
at

]T
Ct

[
st
at

]
+

[
st
at

]T
ct.

We can start by solving for aT as the base case,

Q(sT , aT ) =
1

2

[
sT
aT

]T
CT

[
sT
aT

]
+

[
sT
aT

]T
cT + constant.

Optimising for the action, we find and solve for

∇aTQ(st, at) = 0.

After solving for the linear equations, we find the form of aT and can substitute this back into Q(sT , aT ) which
gives a solution fully specified in terms of sT . We can repeat a similar elimination procedure for uT−1. After
lots of linear algebra, we arrive at the set of LQR recursion algorithms to find the optimal actions

Algorithm 10 LQR Backward Recursion
for t = T until t = 1 do
Qt = Ct + FTt Vt+1Ft.
qt = ct + FTt Vt+1ft + FTt vt+1.

Q(sT , aT ) = 1
2

[
sT
aT

]T
Qt

[
sT
aT

]
+

[
sT
aT

]T
qT + constant.

at ← arg minat Q(st, at) = Ktst + kt.
Kt = −Q−1

at,atQat,st
kt = −Q−1

at,atqat
Vt = Qst,st +Qst,atKt +KT

t Qat,st +KT
t Qat,atKt

vt = qst,atkt +KT
t Qat +KT

t Qat,atkt
V (st) = 1

2s
T
t Vtst + sTt vt+ constant

end for

Algorithm 11 LQR Forward Recursion
for t = 1 until t = T do
at = Ktst + kt
xt+1 = f(st, at)

end for

It turns out that if the the dynamics are stochastic, and these are distributed as a Gaussian with constant
covariance, the solution is exactly the same! This is remarkable as this is not very computationally expensive. In
fact, it is linear. What about the non-linear case? We can simply apply Taylor approximation and use our LQR
algorithm on the linear terms in the Taylor expansion. This is known as DDP or iterative LQR. Remarkably,
this turns out to be very similar to Newton’s method for trajectories! This is discussed in a practical guide for
implementation [20].

5.3 Learning without a Policy
Given some model we can apply the planning tools previously discussed to obtain a highly performant policy
even in cases of large state spaces. Let us consider what happens when we are not given an explicit model of the
environment. Without a model of the environment we have multiple approaches available to us. We could, of
course, apply model-free techniques to directly learn a value function or policy. Once again though the problem
of sample efficiency arises. What if we instead we learn a model of the environment and then apply the planning
tools we previously developed? This approach turns out to be incredibly powerful and is now discussed.
In this scenario we wish to learn a model f(st, at) for the given MDP. Let’s consider the naive and obvious
approach we could take:
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Algorithm 12 Naive Model-Based Algorithm
Apply base policy π0(at, st) to collect a dataset D = {(s, a, s′)i}
Apply supervised learning to find f(s, a) by minimising some loss. e.g.

∑
i ||f(si, ai)− s′i||2.

Plan for actions using f(s, a).

This algorithm is simple and turns out to function under certain conditions. Classical robotics often use this
approach for system identification (e.g. see [21]). Performance, however, turns out to be poor when applying
deep learning approaches. The problem comes in with how we collect data according to some policy and train
our model on that data. Trying to extrapolate from the collected data can lead to cases where our agent can
’fall off a cliff’ - that is, find itself applying knowledge it has gained from data which is not appropriate for the
situation it is in. An obvious solution to this would be to try and collect more data such that it is representative
of the entire state-space.

Algorithm 13 Slightly Better Model-Based Algorithm
Apply base policy π0(at, st) to collect a dataset D = {(s, a, s′)i}
for K steps do
Apply supervised learning to find f(s, a) by minimising some loss. e.g.

∑
i ||f(si, ai)− s′i||2.

Plan for action a′ using f(s, a).
Apply action a′ and add resulting data {(s, a, s′)j} to D.

end for

This approach seems to work with deep learning approaches, but can be sensitive to mistakes an agent
makes. Consider the situation where an agent makes a sub-optimal decision and narrowly leaves the path the
model has appropriate knowledge for. These mistakes can quickly gather momentum and the agent can find
itself once more ’falling off the cliff’. For sufficiently large state-spaces we can never really gather enough data
to be representative while still being efficient in the use of this data. How then can we address this issue? Quite
simply, we can replan right after we add new data to our dataset. This works surprisingly well! So well, in
fact, that replanning can compensate for an imperfect planning algorithm and imperfect agent decisions. This
is useful when we want to plan with short horizons.

Algorithm 14 Replanning Model-Based Algorithm/Model Predictive Control (MPC)
Apply base policy π0(at, st) to collect a dataset D = {(s, a, s′)i}
for N steps do
Apply supervised learning to find f(s, a) by minimising some loss. e.g.

∑
i ||f(si, ai)− s′i||2.

for K steps do
Plan for action a′ using f(s, a).
Apply action a′ and add resulting data {(s, a, s′)j} to D.

end for
end for

Though this replanning algorithm works, there is a large performance gap with model-free methods. The
intuition for why this happens is that the model is imperfect and doesn’t capture what it doesn’t know very
well. This imperfect model may have false local optima, leading to an agent getting stuck planning for actions
it believes will yield high reward.

Uncertainty Estimation

Perhaps we could use uncertainty estimation to detect where the model may be wrong and then correct for these
potential errors without having to collect much more data. This uncertainty is useful in many respects. It may
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be that a certain action yields high expected reward but there is a possibility (encoded in the uncertainty) that
the agent takes too far a step and ’falls off the cliff’. A pessimistic agent may want to avoid this. Or perhaps
this uncertainty can guide exploration as in UCB or Thompson sampling for an optimistic agent. If the agent
only chooses actions for which it believes it will obtain the highest expected reward, the agent can avoid falsely
exploiting the model.

How can we create models that are aware of their own uncertainty? Perhaps we could use the entropy of
the outputs of our model. That is, the entropy of the policy distribution (discrete or continuous). A higher
entropy would correspond to more uncertainty, right? Wrong. We cannot confuse the two types of uncertainty
associated with this statistical process. Consider a model that overfits. This model would have very low entropy
while being a bad model. This difference in ideas of uncertainty can be more broadly captured as

1. Aleatoric (statistical) uncertainty, and

2. Epistemic (model) uncertainty.

This idea is well captured as "the model is certain about the data, but we are not certain about the model."

Could we estimate model uncertainty? Theoretically this is easily done. The usual approach to reinforcement
learning is to estimate arg maxθ log p(θ|D) - the parameters θ that maximises the log-likelihood. What if we
instead estimate the entire distribution p(θ|D)? The entropy of this distribution would give us the uncertainty
in our model. We could then predict according to∫

p(st+1|st, at, θ)p(θ|D)dθ.

Following this approach leads to the idea of a Bayesian neural network, in which each of the weights between
neurons of the network is a distribution. Often these weights are assumed to be independent such that the
distribution over the weights is the product of the marginals, p(θ|D) =

∏
i p(θi|D) where the marginals are

normally distributed, p(θi) = N(µi, σi). This is, of course, a bold and unjustified assumption, but we stick to
it for the sake of computational tractability - as is common in machine learning.

Though the Bayesian networks approach is an active area of research, we shall not discuss it further. Instead
we focus on a third approach to encapsualting the uncertainty of the model - bootstrap ensembles. The idea
here is to train multiple networks on independent data, prediciting the same policy. These individual policies
can be used to reconstruct the full distribution, p(θ|D) ' 1

N

∑
i δ(θi). That is, we form a mixture model using

the different models. Then, ∫
p(st+1|st, at, θ)p(θ|D)dθ ' 1

N

∑
i

p(st+1|st, at, θi).

We can generate independent-like datasets by sampling with replacement from the dataset of our model, D.
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5.4 Learning with a Policy
In section 5.3 we discussed methods of planning with a learned model. These purely model-based methods did
not require any policy to learn a good model of the environment. In this section we discuss another approach
to model-based reinforcement learning in which we use the learned model to try and recover a policy.

Recall that in the stochastic open-loop case the agent is not aware that it can change its decisions in the
future, and so it plans for an optimal set of actions to achieve maximum reward. Clearly this is not optimal. At
each time step an agent gains additional information about the state it is in. This changes the expected reward!
Taking advantage of this ability to plan for being able to change its mind is thus an important caveat. Notice
how our our previous strategies for model-based reinforcement learning was doing just this - planning on the
belief that the agent cannot change its mind. This policy the agent learns can be used to make decisions in the
environment. This policy can be global or local. Local policies can be combined to form a global (mixed) policy.

How can we use models to train policies? Perhaps we could apply backpropagation to maximise our objec-
tive,

∇J(θ) =

T∑
t=1

drt
dst

t∏
t′=2

dst′

dat′−1

dat′−1

dst′−1
.

This approach, though effective in many scenarios, is susceptible to vanishing or exploding gradients, especially
in long time horizon problems due to the chain-rule-like product of Jacobian terms. A great insight reveals itself
when we consider that policy gradients do not actually involve explicit gradient terms. The intuition for this is
that the policy gradients given by

∇J(θ) ' 1

N

N∑
i=1

(

T∑
t=1

∇θ log πθ(at|st))Q̂πi,t

is given in terms of an expectation over time, whereas the backpropagation formula contains Jacobian terms.
Unlike in other areas of machine learning, we cannot choose the form of our dynamics model such that it gives
’nice’ gradients because the dynamics model needs to accurately represent to dynamics of the environment to
get a good policy.

Algorithm 15 Backpropagation Model-Based Algorithm
Apply base policy π0(at, st) to collect a dataset D = {(s, a, s′)i}
for N steps do
Apply supervised learning to find f(s, a) by minimising some loss. e.g.

∑
i ||f(si, ai)− s′i||2.

for K steps do
Apply backpropagation through f(s, a) to optimise policy πθ(at|st).
Run πθ(at|st) and add (s, a, s′) to D.

end for
end for

What if we use derivative-free (model-free) RL algorithms to generate samples within our model-based
approach? This approach leads to a class of algorithms that can be thought of as model-free acceleration in
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that is performs model-free RL and boosts performance by using a model. As we would hope, the approaches
of using backpropagation and policy gradients turn out to be equivalent in the case of stochastic systems when
we apply reparamerisation of the backpropagation formula. There are, of course, trade-offs to the different
approaches in practice. These are as follows:

1. Policy gradient: High variance - can be reduced with samples. That is, more stability with more
samples.

2. Back-propagation (pathwise) gradient: Poor numerical conditioning for long-horizon problems and
non-unity eigenvalues. Small changes at earlier times can cause large deviations in future times.

Dyna

This model-free acceleration idea leads to a highly effective class of algorithms initially presented by Richard
Sutton [22]. The Dyna algorithm is essentially an online Q-learning algorithm that performs model-free rein-
forcement learning (as in section 4.3) while using a model to improve sample efficiency. The use of the model
is a bit subtle. We use it to compute the expected value within the inner Q-update of the following algorithm.
We can now give the pseudocode for the classic Dyna algorithm.

Algorithm 16 (Classic) Dyna
Pick action a by exploration (given state s).
Observe resultant state s′ and reward r - (s, a, s′, r)
Perform Q-update: Q(s, a)← Q(s, a) + αEs′,r[r + maxa′ Q(s′, a′)−Q(s, a)]
Update models p̂(s′|s, a) and r̂(s, a) using new experience (s, a, s′)
for K steps do
Sample (s,a) from buffer
Perform Q-updates: Q(s, a)← Q(s, a) + αEs′,r[r + maxa′ Q(s′, a′)−Q(s, a)]

end for

The structure of this algorithm can be generalised in the sense that we can swap out the model-free method
for updating the value method or policy and we can learn different models. Figure 11 shows this general
structure which forms the basis for many modern, highly performant algorithms.

Algorithm 17 "Dyna-style" MBRL Structure
Collect data (s, a, s′, r).
Learn model p̂(s′|s, a) and (optional) r̂(s, a).
for K steps do
Sample s ∼ B from buffer.
Choose action a in some manner. e.g. From B, π, or random.
Simulate s′ ∼ p̂(s′|s, a) and (optional) r = r̂(s, a)
Train (or store) on artificial transition (s,a,s’,r) using model-free methods.
Optionally take N more model-based steps.

end for

Figure 11: Diagram showing the general architecture for the Dyna algorithm.

There are many modern algorithms which apply this general "Dyna-style" structure. For example, Model-
Based Acceleration (MBA [23]), Model-Based Value Expansion (MVE [24]), and Model-Based Policy Optimisa-
tion (MBPO [25]). Interestingly, in some cases it may actually be harder to train a model than to train a value
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function. In this case model-free methods may be better applied. At this stage researchers don’t know how to
seperate these cases for sure.

6 Representation & Advanced Predictive Methods

6.1 Latent Representation in MBRL
In section 5.3 we discussed methods of model-based reinforcement learning which work in practice. Several
problems arise when trying to apply these methods to problems with complex observations. These problems
include high dimensionality of observations, redundancy of input data, and partial observability of the state
space. Given some POMDP, we can learn a observation model p(ot|st) that is high dimensional but, crucially, is
not dynamic. In addition we can learn about the dynamics p(st+1|st, at), as before. In addition, since rewards
are a function of states and we now have observations, we need a reward model, p(rt|st, at). These separate
models make the training more difficult than before for several reasons. Previously we had a fully observed
model and could apply maximum likelihood theory,

max
φ

1

N

N∑
i=1

T∑
t=1

log pφ(st+1,i|st,i, at,i).

The difference with a latent space model is that we don’t have st or st+1 and so we can only find this result in
expectation,

max
φ

1

N

N∑
i=1

T∑
t=1

E [log pφ(st+1,i|st,i, at,i)] ,

where this expectation is calculated according to (st, st+1) ∼ p(st, st+1|o1:T , a1:T ).

Typically calculated the posterior distribution, p(st, st+1|o1:T , a1:T ) is intractable and so we instead calculate
some approximate posterior, qψ(st|o1:t, a1:t). There are many choices for qψ. These include:

1. The full smoothing posterior, qψ(st, st+1|o1:t, a1:t). This can be complicated to calculate but will be the
most accurate approximation.

2. A single-step encoder, qψ(st|ot). These are simpler to calculate, but comes at the cost of accuracy.

Training qψ can be done by variational inference. For simplicity, let us consider the case when q(st|ot) is a
deterministic single-step encoder such that qψ(st|ot) = δ(st = gψ(ot)) =⇒ st = gψ(ot). Our likelihood-like
calculation then becomes

max
φ,ψ

1

N

N∑
i=1

T∑
t=1

log pφ(gφ(ot+1,i)|gψ(ot,i), at,i) + log pφ(ot,i|gψ(ot,i)).

This is entirely differentiable and thus can be trained using the backpropagation algorithm. We can jointly
optimise for φ, ψ. Putting all the models together we get

max
φ,ψ

1

N

N∑
i=1

T∑
t=1

log pφ(gφ(ot+1,i)|gψ(ot,i), at,i)︸ ︷︷ ︸
Latent Space Dynamics

+ log pφ(ot,i|gψ(ot,i))︸ ︷︷ ︸
Reconstruction

+ log pφ(rt,i|gψ(ot,i))︸ ︷︷ ︸
Reward Model

.
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Algorithm 18 Latent Representation Model-Based Algorithm
Apply base policy π0(at, st) to collect a dataset D = {(s, a, s′)i}
for N steps do
Learn pφ(st+1|st, at), pφ(rt|st), p(ot|st), gψ(ot) (encoder).
for K steps do
Plan for action a′ using models.
Apply action a′ and add observation transition (o, a, o′) to D.

end for
end for

6.2 Contrastive Predictive Coding (CPC) & InfoNCE
A useful technique in modern machine learning is to extract useful representations from high-dimensional data.
Contrastive Predictive Coding is a method proposed by Oord et. al [26] in which prediction of future states in
latent space using autoregressive models allows for learning.

The key concept behind CPC is to learn representations that encode some shared underlying information
between different high-dimensional signals. In so doing, noise and low-level information is discarded.

Figure 12: Overview of Contrastive Predictive Coding, the proposed representation learning approach. Although
this figure shows audio as input, we use the same setup for images, text and reinforcement learning [26].

To perform such predictions, global structure needs to be inferred about the data - nullifying techniques which
rely on local smoothness of data. Conventional prediction techniques rely on powerful conditional generative
models which reconstruct the data to form predictions. This is computationlly intensive, and intractable in many
cases. CPC instead encodes the target x (future state) and context c (present state) into vector representations
in a way that maximally preserves the mutual information of the original signals x and c. Mutual information
measures the amount of information an observation of one random variable gives you about another random
variable.

MI(X;Y ) = DKL(p(x, y)||p(x)p(y)) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
Mutual information can be challenging to compute. InfoNCE [26] is a loss which, when optimised for, gives a
tractable lower bound on the mutual information.

MI(st+k; ct) ≥ Es

[
log

f(zt+k, ct)

f(zt+k, ct) +
∑
sjεS

f(zj , ct)

]

This method is shown to work well in the original paper. It performs well in reinforcement learning contexts as
shown in the GridWorld example of figure 13 below.
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Figure 13: CPC representation of GridWorld environment: UMaze (left), Four-Rooms (middle), and Block-
Maze (right). By clustering embeddings (bottom, all embeddings are visualized by T-SNE), we are able to
recover clusters corresponding to natural structures of the mazes (top) [27].

6.3 Predictive Coding for Sparse Rewards
One of the challenges for modern reinforcement learning problems is that of sparse rewards. For effective and
efficient learning to take place, an agent needs consistent feedback on its performance. In reinforcement learning,
this feedback takes the form of a reward signal. Predicitive coding has been sugested as one method of boosting
deep reinforcement learning with sparse rewards. In Predictive Coding for Boosting Deep Reinforcement Learn-
ing with Sparse Rewards [27], representation learning is applied to provide the agent with meaningful rewards
without the need for specific domain knowledge. Predictive coding is used in an unsupervised learning context
to extract features from the environment.

The first step is to train an encoder that extracts predictive features from states. Initial exploration is done to
collect trajectories, which are then sampled from and used to train a CPC encoder. A fixed number of states
are encoded into some latent embedding, which is then passed through a gated recurrent unit (GRU) to pro-
duce ’context’. This context is then used to predict the embedding of remaining states using some score function.

The embeddings are used in the reinforcement learning context by shaping rewards. This is done in two
different ways.

1. Clustering: Random states are sampled from the environment and clustered according to their corre-
sponding embeddings. An agent is rewarded for entering a cluster containing a reward.

2. Negative Distance Optimisation: For large state space environments, optimisation is done directly
on the distance between the current state and goal state in embedding space. This is done by adding a
penalty to the reward function corresponding to this distance. For each time step t, we add −||zt − zg||2,
where zt is the embedding of the current state st and zg that of the goal state.

Figure 14: Success Rate in GridWorld Environments. A successful run indicates that the agent reaches the goal
from a random stating potion in the maze within 100 steps [27].

Setup U-Maze Four-Rooms Block-Maze
Without Clustering 61% 71% 98%
With Clustering 98% 98% 100%

Table 1: Success Rate in GridWorld Environments [27].
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Figure 15: Illustration of learning curves for different setups. Learning on the original sparse reward problem
with embeddings as features (pink) did not lead to significant learning improvement, while using embeddings
to provide rewards (purple) achieved the best learning [27].

7 State-of-the-Art Models
In this section we explore various state-of-the-art approaches to learning, especially methods which make use
of prediction, inference and world models. This section ties together much of the theory developed in earlier
sections and tries to present a coherent picture of how the algorithms work with some level of detail as to the
implementation. Looking at the original papers is, of course, encouraged.

7.1 Learning By Imagination
The World Models [28] paper presented at NIPS in 2018 exploits the idea of having an agent train entirely
within its latent representation of the world it is in - its world model - and apply this learned knowledge to the
real world. This paper distils many years and areas of research into a highly efficient framework for model based
reinforcement learning. Taking a moment to understand this paper is useful because many of the advancements
made since this paper released use ideas similar to the ones developed here.

Humans use world models to plan and make decisions quickly and efficiently - something model free algo-
rithms have not been able to achieve to date. Of course, humans do not have a model of the same dimension
as the world. To deal with the complexity of the world our brains form and learn abstract representations of
"temporal and spatial aspects of information". As we have previously discussed, prediction plays a vital role in
this process. By allowing an agent to dream and imagine about the world it is in, the agent can dramatically
improve its sample efficiency and its overall performance. As discussed in [13], efficiency is said to be a crucial
component of how we should measure intelligence of intelligent systems. This makes improving upon the sample
inefficiencies in model free RL crucial for creating an intelligent system.

The key here in the world models paper to ensure that we know how limited we are based on how much
information we have gathered about the environment. When building a model of our environment, we want
to make sure that the information we have gathered to build a model is representative of the dynamics of the
system. This model can then be trained in an unsupervised manner within the latent representations we form
using the data we have gathered from the environment.

Let’s take a step back. What are the pieces we need to build an agent that can learn by imagination?

1. Sample random rollouts according to a random policy.

2. Extract visual information (pixels to information) from the environment,

3. Ensure information is representative of the environment.

4. Form a latent representation, and

5. form predictions of the future states. Finally,

6. select appropriate actions.
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The architecture consists of three components: the vision model (V), the memory model (M) and the controller
(C). The vision and memory models form the ’world model’. This world model can accomplish steps 1-4 above.
High dimensional data is encoded into a latent representation by the vision model. Historical data along with
current observations allow prediction of future states. These predictions are used to select the best actions
based on expected future returns.

A Variational Autoencoder (VAE) is used as the vision model. Essentially, the VAE tries to encode the impor-
tant information encoded in the images as they change over time. For example, in the car racing environment
the most important information is encoded in how the track changes from frame to frame. A latent repre-
sentation would ideally capture only this information. The smaller the representation, the faster we can train
the networks and form predictions. The VAE also learns a decoder. This allows the latent variable to be decoded.

An MDN-RNN is used for the memory model. This uses past events to output a prediction for a distribu-
tion of outcomes based on what has been and is currently being observed by the vision model. That is, given
one observation the memory model outputs several predictions with an associated probability of that event oc-
curring. This is nicely displayed is the graphic below. Interestingly, a reproduction [29] of this experiment found
that training the MDN-RNN for the car racing environment does not improve performance, but removing the
MDN-RNN does degrade performance. The investigators interpret this as a by considering that the MDN-RNN
recurrent state contains crucial temporal information which is absent from individual frames.
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Figure 16: This figure displays an example of the predictive power of RNNs, similar to the RNN used in the
World Models paper. Here a single line leads to numerous predictions of what the drawing will look like given
that it should be a cruise ship. This example comes from SketchRNN, a free online game for experimenting
with RNNs [30].

Learning by imagination Conventionally one would form predictions to select the action which is ex-
pected to give the highest return. This action would be selected and the response of the environment would
be used to update the model. This is done in the first half of the paper and state-of-the-art (at the time of
release) performance is achieved. Naturally one wonders whether we could continue to train our models on the
predicted latent variables. This is exactly what the authors proceed to do in the VizDoom environment. The
memory model is amended so as to also predict whether or not the agent dies in the next frame. This is done
to ensure the world model produces the same dynamics that the VizDoom environment would return.

Thus, by training entirely using the predictions formed by the world model, we can train our agent to be
successful within the imagined world. The aim, of course, is not to simply be successful within the world model,
but to be successful in the real world. Since the virtual environment has an identical interface to the real
environment, the policy learned by imagination can be easily transferred and applied in the real world. This is
a major insight in this paper.

The authors note that the agent can learn to exploit the imperfections in the world model. Adding a tem-
perature τ parameter during the sampling of the predicted latent parameter increases the difficulty of surviving
in the imagined environment and actually leads to improvements in transferred performance depending on the
choice of τ . The intuition here is that it becomes harder for the agent to exploit these imperfections.

This paper is really quite remarkable in its deceptive simplicity. The individual components of the models
presented can and have been improved since its publication, but the idea of training by imagination using latent
representation to improve training performance was a crucial insight that is used in algorithms like SimPLE
and MuZero.

A recent remarkable improvement in this area was presented in Dream to Control: Learning Behaviours by
Latent Imagination, presented at ICLR 2020, is an incremental improvement on the success of World Models.
This paper introduces an algorithm called Dreamer [31] which exceeds performance of existing approaches in
20 challenging visual control tasks. Dreamer is specifically geared toward deriving behaviour from long-horizon
tasks with pixel (image) observations by latent imagination. This agent distinguishes itself from the approach
in World Models by allowing the agent to efficiently and iteratively update by backpropagation, whereas World
Models applied a non-iterative, derivative-free approach. The algorithm consists of three main components
which can be run in parallel during training. These are

1. World model: A dataset of past experience is used to train the model.

2. Behaviour: The world model is used to learn behaviours purely by imagination using a value and actor
network.

3. Environment: The agent interacts with the environment to grow the experience of the model.

The idea of training using limited experience in a simulated environment (imagination) follows from recent
advancements in the understanding of how sleep and dreaming play an important role in human cognition and
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skill acquisition (see [32] and [33] for example). Once again, advancements in neuroscience leads to an improved
understanding of how we can increase performance in artificially intelligent agents. The key contributions in
this paper are summarised by the authors as:

1. Learning long-horizon behaviour by latent imagination: both states and actions are predicted in
long-horizon tasks, allowing for efficient learning purely of a policy by propagating analytic value gradients
back through the latent dynamics.

2. Improved emperical performance for visual control tasks: applied to DeepMind’s Control Suite
environments for control tasks, Dreamer exceeds previous model-based and model-free agents in terms
of data-efficiency, computation time, and final performance. Dreamer does all this using the same hyper
parameters for all tasks in the suite - another mark of intelligence according to Chollet [13].

Dreamer uses an actor-critic learning procedure for behaviors that consider rewards beyond the horizon. An
action model and a state model are learned in the latent space. The goals of the policy in the world model is to
predict actions that solve the simulated, imagined, environment. The goal, of course, is that the learned policy
will be effective in the real environment. Both the action and value models are trained using a policy iteration
procedure. The value of states can be estimated in various ways. Dreamer uses an exponentially-weighted
average of the estimates for a different number of steps, k, into the future. This has been found to balance bias
and variance in practice. This tradeoff between bias and variance was discussed in earlier sections. See Sutton
and Barto [10] for further detailed discussion on this trade-off. Formally, we can write this value estimation as

Vλ (sτ ) = (1− λ)

H−1∑
n=1

λn−1Vn
N (sτ ) + λH−1VH

N (sτ ) .

Figure 17: Components of Dreamer. (a) Using past experience, the agent learns to encode observations and
actions into compact latent states. It can then and predict environment rewards. (b) In the compact latent
space, Dreamer predicts state values and actions that maximise future return by propagating gradients back
through imagined trajectories. (c) The agent encodes the history of the episode to compute the current model
state and predict the next action to execute in the environment.
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Algorithm 19 Dreamer
Initialise dataset D with S random seed episode.
Initialize neural network parameters θ, φ, ψ randomly.
while not converged do
for update step c = 1 . . . C do
// Dynamics Learning
Draw B sequences {(at, ot, rt)}k+L

t=k ∼ D.
Compute model states st ∼ pθ(st|st−1, at−1, ot).
Update θ using representation learning.

// Behaviour Learning
Imagine trajectories {(sτ , aτ )}t+Hτ=t from each st.
Predict rewards E(qθ(rτ |sτ )) and values vψ(sτ ).
Compute value estimates Vλ(sτ ).
Update φ← φ+ α∇φ

∑t+H
τ=t Vλ(sτ ).

Update ψ ← ψ − α∇ψ
∑t+H
τ=t

1
2 ||vψ(sτ )− Vλ(sτ )||2.

end for

// Environment Interaction
o1 ← env.reset()
for time step t = 1 . . . T do
Compute st ∼ pθ(st|st−1, at−1,at) from history.
Compute at ∼ qφ(at|st) using the action model.
Add exploration noise to the action.
rt, ot+1 ← env.step(at).

end for
Add experience to dataset D ← D

⋃
{(ot, at, rt)Tt=1}

end while

7.2 Free Energy of Expected Future
The active inference framework proposes agents act to maximise the evidence for a biased generative model,
whereas in reinforcement learning the agent seeks to maximise the expected discounted cumulative reward. In
Reinforcement Learning Through Active Inference [34] a new RL objective - the free energy of the expected future
- is implemented by augmenting traditional learning techniques with concepts from active inference theory. This
approach eliminates the need for training a world model and instead applies a generative model to perform active
inference. This approach has two important side effects.

1. A balance between exploration and exploitation is intrinsic.

2. It allows for a sparsity and lack of reward.

Both RL and active inference highlight the importance of probabilistic models, planning efficiently, and inferring
explicitly about the environment. In the context of active inference, agents seek to maximise their Bayesian
model evidence for their generative model pΦ(o, s, θ), where θ are model parameters. This generative model
can be biased towards observations that are likely and beneficial for an agent’s success. Rewards are treated
as prior probabilities over some observation, o. The divergence, DKL, between the preferred and the expected
outcome is used as a measure of the success of this model.

Recall from section 2.2 that agents can perform approximate Bayesian inference by minimising the variational
free energy. Given some distribution q(s, θ), and some generative model pΦ(o, s, θ), the free energy is given by

F = DKL

[
q(s, θ)||pΦ(o, s, θ)

]
.

In this formulation, we treat the model parameters θ as random variables. We are thus treating the learning
process as a process of approximate inference. In this formulation, agents maintain beliefs about about policies
π = o0, . . . , oT . Policy selection can thus be formulated as a process of approximate inference over the distribu-
tion of policies, q(π).

Since a policy holds information about a sequence of variables in time, the free energy formulation needs
to be altered so as to incorporate future variables. This leads directly to the formulation of the free energy of
the expected future - a quantity we wish to minimise, defined as

F̃ = DKL

[
q(o0:T , s0:T , θ, π)||pΦ(o0:T , s0:T , θ)

]
,
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where q(o0:T , s0:T , θ, π) is the agent’s belief about future variables, and pΦ(o0:T , s0:T , θ) is the generative model.

F̃ = 0 =⇒ DKL

[
q(π)|| − e−F̃π

]
= 0

where
F̃π = DKL

[
q(o0:T , s0:T , θ|π)||pΦ(o0:T , s0:T , θ)

]
.

This gives the result that the free energy of the expected future is minimised when q(π) = σ(−F̃π). Therefore,
policies that minimise F̃π are more likely.

Naturally, the question arises as to what minimising this quantity, F̃π, means. Assuming the model is only
biased in its beliefs of observations, the authors propose factorising the agent’s generative model as follows:

pΦ(00:T , s0:t, θ) = p(s0:t, θ|00:T )pΦ(00:T ).

Here, pΦ(00:T ) is a distribution over preferred rewards - since this is the goal in RL. Using this factorisation, it
can be shown that F̃π can be broken down into two terms representing distinct concept,

−F̃π ' −Eq(00:T |π) [DKL [q(s0:T , θ|o0:T , π)||q(s0:T , θ|π)]]︸ ︷︷ ︸
Expected Information Gain

+ Eq(s0:T,θ|π)

[
DKL

[
q(o0:T |s0:T ,θ,π)||pΦ(o0:t)

]]︸ ︷︷ ︸
Extrinsic Term

.

The expected information gain is crucial as it quantifies the amount of information an agent believes it will
gain by following some policy. This term promotes exploration of the state and parameter spaces, since agents
hold beliefs about both the state of the environment and its own model parameters. The minimisation of the
extrinsic term is, by definition, the minimisation of the difference between what the agent believes about future
observations and what it would prefer to observe. In other words, it measures how much reward it expects to see
in the future in contrast to how much reward it would like to achieve. This is exploitation. This result is key as a
natural balance between exploration and exploitation is a fundamental issue in reinforcement learning in general.

This objective is evaluated in three steps:

1. Evaluate beliefs,

2. Evaluate F̃π, and

3. Optimise q(π) such that q(π) = σ(−F̃π)

The first step, evaluating beliefs, can be formally described similarly to reinforcement learning.

q (st:T , ot:T , θ | π) = q(θ)

T∏
t=τ

q (oτ | sτ , θ, π) q (sτ | sτ−1, θ, π)

q (oτ | sτ , θ, π) = Eq(sτ |θ,π) [p (oτ | sτ )]

q (sτ | sτ−1, θ, π) = Eq(sτ−1|θ,π) [p (sτ | sτ−1, θ, π)]

We can then efficiently calculate the free energy of the expected future given beliefs about future variables. For
a single time step, this can be computed as

−F̃πτ ≈ Eq(sτ ,θ|π)

[
DKL

(
q (oτ | sτ , θ, π) ‖pΦ (oτ )

)]
+ H [q (oτ | π)]− Eq(sτ |π) [H [q (oτ | sτ , π)]]︸ ︷︷ ︸

State information gain

+ H [q (sτ | sτ−1, θ, π)]− Eq(θ) [H [q (sτ | sτ−1, π, θ)]]︸ ︷︷ ︸
Parameter information gain

Finally, the policy distribution can be optimised. Here a full cross-entropy method (CEM) approach is presented
as in the original paper [34].
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Algorithm 20 Inference of q(π)

Initialise factorised belief over action sequences q(π)→ N(0, 1)
for optimisation iteration i = 1 . . . I do
Sample J candidate policies from q(π)
for candidate policy j = 1 . . . J do
π(j) ∼ q(π)
−F̃ jπ = 0
for τ = t . . . t+H do
q(sτ |sτ−1, θ, π

(j)) = Eq(sτ−1|θ,π(j))

[
p(sτ |sτ−1, θ, π

(j))
]

q(oτ |sτ , θ, π(j)) = Eq(sτ |θ,π(j)) [p(oτ |sτ )]

−F̃jπ ← −F̃ jπ + Eq(sτ |θ,π(j))

[
DKL(q(oτ |sτ , θ, π(j)))||pΦ(oτ )

]
+H[q(sτ |sτ−1, θ, π

(j))]− Eq(θ)
[
H[q(sτ |sτ−1, θ, π

(j))]
]

end for
end for
q(π)→ refit(−F̃ jπ)

end for
return q(π)

7.3 SimPLe
Simulated Policy Learning (SimPLe) [35] is a complete model-based RL algorithm which uses prediction models
to drastically improve sample efficiency and outperform state-of-the-art model-free methods in the Atari Learn-
ing Environment (ALE) - an environment which has traditionally favoured model-free methods. One difficulty
of this environment is that observations are only partially observed, and thus do not necessarily convey the true
underlying state of the system. The intuition is that SimPLe learns how the games work, and thus can quickly
learn to predict the actions that need to be taken to get desirable outcomes.

The SimPLe algorithm was developed with the solving games in the ALE - a de facto benchmarking suite
for RL algorithms. SimPLe managed to advance the state-of-the-art in model-based RL methods by exper-
imenting with stochastic video prediction techniques and discrete latent variables (representation learning).
SimPLe is especially impressive in low-data regimes, where it outperforms previous state-of-the-art methods
(Rainbow [36]) using only half the number of samples in many of the games - even when they are tuned for
sample efficiency.

Figure 18: Main loop of SimPLe. 1) the agent starts interacting with the real environment following the latest
policy (initialised to random). 2) the collected observations will be used to train (update) the current worl
model. 3) the agent updates the policy by acting inside the world model. The new policy will be evaluate
to measure the performance of the agent as well as collecting more data (back to 1). Note that world model
training is self-supervised for the observed states and supervised for the reward [35].

In Atari games, the goal is to find a policy π such that following π maximises the expected discounted return
from the beginning of the game - the value function Eπ[

∑∞
−∞ γtrt+1|s0 = s]. In SimPLe, a neural network is

used to simulate the dynamics of the environment env by some approximation env′. This world model shares
both the action and reward spaces of env and produces predicted (expected) visual observations in the same
format of the true environment. A sub-goal of SimPLe is thus to accurately mimic env with env′ using as
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few interactions with env as possible. Random trajectories are sampled from env and used to train env′ as in
algorithm 21 below.

Algorithm 21 SimPLe
Initialise policy π
Initialise model parameters θ of env′
Initialise empty set D
while not done do
D ←− D ∪ COLLECT(env, π)
θ ←− TRAIN_SUPERVISED(env′, D)
π ←− TRAIN_RL(π, env′)

end while

In the case of the of the SimPLe paper, proximal policy optimisation (PPO) was used to train the policy,
as indicated by TRAIN_RL in algorithm 21. A discount factor of γ = 0.95 was used. As stated earlier, the
algorithm randomly samples trajectories from the environment to train the world model. The imperfections in
this approximated model, env′, can compound over time. For this reason, the original paper suggests uniformly
sampling the initial state from the ground-truth buffer D and restarting env′ every N steps (typically, N=50).
After N steps, the evaluation of the value function is added to the reward. This is done to ensure the PPO
algorithm is not degraded by the short random rollouts (trajectories).

The explicit architecture of SimPLe as in the original paper can be summarised as follows.

• Deterministic Model: Input to the model consists of four consecutive frames and some action a. Stacked
convolution layers process the input. Actions are vectorised and multiplied with output from convolutional
layers. The next frame of the game and associated reward is predicted.

• Loss functions: A clipped loss max(Loss, C) (constant C) was used to improve the model. The authors
suggested that clipping removes the weight given to fine-tuning of image backgrounds in Atari games,
allowing for focus on important aspects of the game (e.g. ball in Pong).

• Scheduled sampling: The model env′ is susceptible to compound errors and drift since it is trained by
its own predictions. This is mitigated by random replacement of input to the model by a prediction from
the previous step.

• Stochastic Models: Even though Atari games are deterministic in their nature, given partial observabil-
ity and limited horizon of past observations they can appear stochastic to the agent. The proposed model
includes a stochastic component, which means SimPLe can be used with truly stochastic environments.
An additional network receives both the input frames and the target to approximate the posterior. Latent
values zt are sampled at each time step, and passed as input to the predictive model. During testing,
latent values are sampled from an assumed prior distribution. A KL-divergence term is added to the loss
term to ensure matching of assumed and approximate prior distributions.
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Figure 19: Architecture of the proposed model. The input to the model is four stacked frames (as well as the
action selected by the agent) while the output is the next predicted frame and expected reward. Input pixels
and action are embedded using fully connected layers. First, the bottom part of the network which consists of
a skip-connected convolutional encoder and decoder. To condition the output on the actions of the agent, the
output of each layer in the decoder is multiplied with the (learned) embedded action. Second part of the model
is a convolutional inference network which approximates the posterior given the next frame. During training
the sampled latent values from the approximated posterior will be discretized. A third LSTM based network is
trained to approximate each bit given the previous ones. At inference time, the latent bits are predicted auto-
regressively using this network. The deterministic model has the same architecture as this figure but without
the inference network [35].

7.4 MuZero
One of the most important reinforcement learning results in recent times is given in Mastering Atari, Go, Chess
and Shogi by Planning with a Learned Model [37]. This paper is important as it provides a new state-of-the-art
in the Atari ALE which is visually complex and has favoured model-free approaches in the past. It also matches
superhuman performance in planning tasks such as Go, Chess and Shogi. Adding to this, MuZero does not
rely on knowledge of the environment’s dynamics. This work builds upon AphaZero [38] by including a learned
model in the training procedure.

Once again, prediction plays a key role in the success of this agent. MuZero aims to predict the aspects of
the future that will be directly relevant for planning. Observations are received as input and transformed into
a hidden (latent) state. At each time-step, the previous hidden state and a possible action is received. The
model uses this input to predict the correct policy, the value function, and the immediate reward that will be
received. The model is trained so as to accurately predict these quantities.

At each time-step t, and for each roll-out step k = 1...K, a model µθ conditioned on past observations o1, . . . , ot
and future actions a1, . . . , at is used to make predictions of the policy pkt , value function vkt and immediate
reward rkt . Here,

pkt ' π(at+k+1|o1, . . . , ot, a1, . . . , at),

vkt ' E [ut+k+1 + γut+k+2 + . . . |o1, . . . , ot, a1, . . . , at] ,

pkt ' ut+k,

where π is the policy to select real actions, u is the true reward given by he environment, and γ is the discount
factor.

The model itself is built up of three components - a representation function, a dynamics function, and a predic-
tion function. The dynamics function is a recurrent process which takes in some state-action pair, (sk−1, ak),
and returns a state sk and associated reward rk. Note, the states in this dynamics function do not represent
those of the true environment. They merely serve to the purpose of accurately predicting the dynamics of the
true environment - that is, mimicking the MDP. This mimicry is the job of the representation function. The
prediction function takes in the state sk and computes a policy and value function.

Given that we have a dynamics function, we can apply planning algorithms to state spaces and internal rewards.
MuZero applies MTCS at each time step. An estimated policy πt and an estimated value vt, from which an
action at+1 ∼ πt is selected. Selection is done in proportion the the visit count for each action from the root node.
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The different components of the model are jointly trained so as to most accurately represent to MDP of the true
environment. There are three main objectives during this training. These are minimising the error between

1. the predicted policy pkt and search policy πt+k,

2. the predicted value vkt and the target value zt+k, and

3. the predicted reward rkt and the observed rewards ut+k.

The final aspect of the model is an L2 regularisation term. The overall loss function for the model is thus:

lt(θ) =

K∑
k=0

lr(ut+k, r
k
t ) + lv(zt+k, v

k
t ) + lp(πt+k, p

k
t ) + c||θ||2,

where lr, lv, lp are loss function for the reward, value and policy respectively.

Figure 20: Planning, acting, and training with a learned model.
(A) How MuZero uses its model to plan. The model consists of three connected components for representation,
dynamics and prediction. Given a previous hidden state sk−1 and a candidate action ak, the dynamics function g
produces an immediate reward rk and a new hidden state sk. The policy pk and value function vk are computed
from the hidden state sk by a prediction function f . The initial hidden state s0 is obtained by passing the past
observations (e.g. the Go board or Atari screen) into a representation function h. (B) How MuZero acts in the
environment. A Monte-Carlo Tree Search is performed at each time step t, as described in A. An action at+1 is
sampled from the search policy πt, which is proportional to the visit count for each action from the root node.
The environment receives the action and generates a new observation ot+1 and reward ut+1. At the end of the
episode the trajectory data is stored into a replay buffer. (C) How MuZero trains its model. A trajectory is
sampled from the replay buffer. For the initial step, the representation function h receives as input the past
observations o1, . . . , ot from the selected trajectory. The model is subsequently unrolled recurrently for K steps.
At each step k, the dynamics function g receives as input the hidden state sk−1 from the previous step and the
real action at+k. The parameters of the representation, dynamics and prediction functions are jointly trained,
end-to-end by back-propagation-through-time, to predict three quantities: the policy pk ' πt+k, value function
vk ' zt+k, and reward rt+k ' ut+k, where zt+k is a sample return: either the final reward (board games) or
n-step return (Atari) [37].
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Figure 21: The following is taken directly from the original paper [37]. Evaluation of MuZero throughout
training in chess, shogi, Go and Atari. The x-axis shows millions of training steps. For chess, shogi and
Go, the y-axis shows Elo rating, established by playing games against AlphaZero using 800 simulations per move
for both players. MuZero’s Elo is indicated by the blue line, AlphaZero’s Elo by the horizontal orange line. For
Atari, mean (full line) and median (dashed line) human normalized scores across all 57 games are shown on
the y-axis. The scores for R2D2 [39] (the previous state of the art in this domain, based on model-free RL) are
indicated by the horizontal orange lines. Performance in Atari was evaluated using 50 simulations every fourth
time-step, and then repeating the chosen action four times.

8 Simulations & Implementation
We are now ready to discuss an implementation of the MuZero agent presented in the previous section. This
implementation is based on the work of Johan Gras [40]. For simplicity, this model is implemented on OpenAI’s
CartPole environment with some minor differences from the full MuZero agent implemented by DeepMind.

1. Fully connected layers are used instead of convolutional layers. Gras points out that the nature of the
CartPole environment has no spatial correlations in the vector of observations, as the MuZero agent would
experience when interacting with Atari environments.

2. Instead of scaling the hidden state to a probability [0, 1] using min-max, the tanh function is used to map
values on (−1, 1).

3. The more complex transform for value prediction is simplified by removing linear terms.

4. No prioritised replay is used. Instead, random draws from a uniform distribution is used.

5. Loss is not scaled by the number of unrolled steps. It is assumed the number of unrolled steps is constant.

The pseudocode provided by DeepMind in the original paper [37] has a structure based on the theory discussed
in the previous section. This is shown in detail in figure 22. We start off by defining the muzero agent. Here
we initialise the shared storage and replay buffer. We run the training loop and output the training score
to measure the performance as the algorithm is training. In the full implementation, seperate jobs would be
initialised to train the agent in parallel. This is not necessary for the simple application of CartPole.

def muzero(config: MuZeroConfig):
storage = SharedStorage()
replay_buffer = ReplayBuffer(config)

for loop in range(config.nb_training_loop):
print("Training loop", loop)
score_train = run_selfplay(config, storage, replay_buffer, config.nb_episodes)
train_network(config, storage, replay_buffer, config.nb_epochs)

print("Train score:", score_train)
print("Eval score:", run_eval(config, storage, 50))
print(f"MuZero played {config.nb_episodes * (loop + 1)}" f"episodes and trained for

{config.nb_epochs * (loop + 1)} epochs.\n")
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train_network(config, storage, replay_buffer)

return storage.latest_network()

Figure 22: Figure showing the structure of the python implementation of DeepMind’s MuZero agent.

Next we setup the shared storage and replay buffers. For brevity we leave the implementations out of this
discussion (see [37], [40]). Next, we have to set up one of the most crucial parts of MuZero - the self-play. This
feature draws on the work of AlphaZero and is a major reason MuZero can so effectively learn. In the full
implementation each parallel job runs the run_selfplay() function that takes the latest version of the network
from the memory bank and plays a game with it. The details of this game is then saved to the shared buffer.

def run_selfplay(config: MuZeroConfig, storage: SharedStorage,
replay_buffer: ReplayBuffer):

while True:
network = storage.latest_network()
game = play_game(config, network)
replay_buffer.save_game(game)

The next step of the implementation is building the three networks that make up the inference process MuZero
goes through during training. Recall, these are the prediction, dynamics, and representation networks. The
structure of this network code is given below. Here the networks are optimised together. This is to ensure that
strategies that perform well inside the imagined environment translate well into real world performance.

class Network(object):
def initial_inference(self, image) -> NetworkOutput:
# representation + prediction function
return NetworkOutput(...)

def recurrent_inference(self, hidden_state, action) -> NetworkOutput:
# dynamics + prediction function
return NetworkOutput(...)

def get_weights(self):
# Returns the weights of this network.
return ...

def training_steps(self) -> int:
# How many steps / batches the network has been trained for.
return ...

Next up, we have to actually run a game! This is where the interesting planning theory we discussed comes
into play. First we create a game object according to the configuration we set up. We then repeat proceed
with the Monte-Carlo Tree Search procedure of expanding a node in the state-action space, exploring where
necessary. MCTS is used to select the action to take, and the performance (value) of this action is stored. The
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nodes themselves store valuable information about how often they have been visited and whether or not it has
children. This helps when selecting a node for exploration vs exploitation.

def play_game(config: MuZeroConfig, network: Network) -> Game:
game = config.new_game()
while not game.terminal() and len(game.history) < config.max_moves:
root = Node(0)
current_observation = game.make_image(-1)
expand_node(root, game.to_play(),

game.legal_actions(),network.initial_inference(current_observation))
add_exploration_noise(config, root)

run_mcts(config, root, game.action_history(), network)
action = select_action(config, len(game.history), root, network)
game.apply(action)
game.store_search_statistics(root)

return game

The MCTS implementation is fairly standard and follows from the pseudocode discussed in section 5.1. Selecting
a node follows from taking the node with the highest UCB score. Recall this can be written as

ak = arg max
a

[
Q(s, a) + P (s, a) ·

√∑
bN(s, b)

1 +N(s, a)

(
c1 + log

(∑
bN(s, b) + c2 + 1

c2

))]
.

The value predicted by the network based on this selection is back-propagated up the tree of possible state-
actions - along the search path taken. After num_simulations passes through the tree, we stop the search and
select the action with the number of times each child node of the root has been visited.

def select_child(config: MuZeroConfig, node: Node,min_max_stats: MinMaxStats):
_, action, child = max((ucb_score(config, node, child, min_max_stats), action,child) for action,

child innode.children.items())
return action, child

Finally we get to the training step. How does MuZero actually improve? As in the full implementation, we
apply a momentum based optimiser and have a decaying learning rate. The agent is trained in batches and
weights are updated as the training progresses.

def train_network(config: MuZeroConfig, storage: SharedStorage,replay_buffer: ReplayBuffer):network =
Network()

learning_rate = config.lr_init * config.lr_decay_rate**(tf.train.get_global_step() /
config.lr_decay_steps)

optimizer = tf.train.MomentumOptimizer(learning_rate, config.momentum)

for i in range(config.training_steps):
if i % config.checkpoint_interval == 0:
storage.save_network(i, network)

batch = replay_buffer.sample_batch(config.num_unroll_steps, config.td_steps)
update_weights(optimizer, network, batch, config.weight_decay)

storage.save_network(config.training_steps, network)

The final piece of the puzzle is how to update the weights of the network. We apply the loss function we
developed in the theory section,

lt(θ) =

K∑
k=0

lr
(
ut+k, r

k
t

)
+ lv

(
zt+k, v

k
t

)
+ lp

(
πt+k,p

k
t

)
+ c‖θ‖2.

These losses over the entire rollout are added together to generate the loss for a given position in a specific
batch. Large weights are penalised by a regularisation term to ensure no drastic changes occur.

def update_weights(optimizer: tf.train.Optimizer, network: Network, batch,weight_decay: float):
loss = 0
for image, actions, targets in batch:
value, reward, policy_logits, hidden_state = network.initial_inference(image)
predictions = [(1.0, value, reward, policy_logits)]

for action in actions:
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value, reward, policy_logits, hidden_state = network.recurrent_inference(hidden_state, action)
predictions.append((1.0 / len(actions), value, reward, policy_logits))

hidden_state = tf.scale_gradient(hidden_state, 0.5)

for prediction, target in zip(predictions, targets):
gradient_scale, value, reward, policy_logits = prediction
target_value, target_reward, target_policy = target
l = (

scalar_loss(value, target_value) +
scalar_loss(reward, target_reward) +
tf.nn.softmax_cross_entropy_with_logits(logits=policy_logits, labels=target_policy)

)
loss += tf.scale_gradient(l, gradient_scale)

for weights in network.get_weights():
loss += weight_decay * tf.nn.l2_loss(weights)

optimizer.minimize(loss)

And that’s MuZero! Of course, many of the details of the implementation are left out here. The important details
are captured. It turns out, however, that training this algorithm on a simple game like CartPole, without parallel
jobs, large computational power and detailed hyper parameter tuning, is not very effective. This following figure
shows performance of a short training run of this implementation of MuZero on the CartPole environment.

Figure 23: Graph showing the training and evaluation scores of the MuZero algorithm implemented in this
section when tested on the CartPole environment.
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9 Conclusions
This paper started by introducing the field of reinforcement learning and laying the groundwork for key ideas
in modern neuroscience, optimal control and reinforcement learning. Some important recurring problems such
as exploration and exploitation, as well as sample efficiency and trade-offs were presented. A comprehensive
introduction to model-free followed. A detailed introduction to model-based methods of planning and learning
with and without derivative based approaches was presented, before exploring some advanced ideas of repre-
sentation and prediction in reinforcement learning. Finally, some state-of-the-art predictive and model-based
methods were explored.

Possibility for Future Investigation
There is much room for exploration in this area, and new state-of-the-art methods seemingly appear everyday
with the current pace of innovation and research in this area. Though little emphasis was placed on generative
model approaches to inference and control, the benefits of free-energy approaches to reinforcement learning
should be explored. I strongly believe that the ideas of imagination and building a model of the world around
us is a crucial component for a human-like intelligence. It is also evident that these methods can greatly improve
performance in both general and specific skill-based tasks.

It is clear that the fields of neuroscience and reinforcement learning have lots to contribute to each other.
Implementation in artificial intelligence form a test-bed for what theories ’work’ in the real world. Neuroscience
contributes by adding new ideas for direction of research and ideas for practical and theoretical implementa-
tions for artificial agents. I only see this connection getting stronger in the future as ideas such as curiosity,
causality and other intrinsic motivations used in unsupervised reinforcement learning becomes more popular in
the academic community. The interesting ideas of free energy and inference will undoubtedly play a part in
how artificially intelligent agents are designed in the future. This certaintly warrants further investigation.
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